Constant Approximating Disjoint Paths on Acyclic Digraphs Is W[1]-Hard

Author Michał Włodarczyk



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.57.pdf
  • Filesize: 0.95 MB
  • 16 pages

Document Identifiers

Author Details

Michał Włodarczyk
  • University of Warsaw, Poland

Cite As Get BibTex

Michał Włodarczyk. Constant Approximating Disjoint Paths on Acyclic Digraphs Is W[1]-Hard. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 57:1-57:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.57

Abstract

In the Disjoint Paths problem, one is given a graph with a set of k vertex pairs (s_i,t_i) and the task is to connect each s_i to t_i with a path, so that the k paths are pairwise disjoint. In the optimization variant, Max Disjoint Paths, the goal is to maximize the number of vertex pairs to be connected. We study this problem on acyclic directed graphs, where Disjoint Paths is known to be W[1]-hard when parameterized by k. We show that in this setting Max Disjoint Paths is W[1]-hard to c-approximate for any constant c. To the best of our knowledge, this is the first non-trivial result regarding the parameterized approximation for Max Disjoint Paths with respect to the natural parameter k. Our proof is based on an elementary self-reduction that is guided by a certain combinatorial object constructed by the probabilistic method.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
Keywords
  • fixed-parameter tractability
  • hardness of approximation
  • disjoint paths

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Isolde Adler, Stavros G. Kolliopoulos, Philipp Klaus Krause, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Irrelevant vertices for the planar disjoint paths problem. J. Comb. Theory, Ser. B, 122:815-843, 2017. URL: https://doi.org/10.1016/j.jctb.2016.10.001.
  2. Saeed Akhoondian Amiri, Stephan Kreutzer, Dániel Marx, and Roman Rabinovich. Routing with Congestion in Acyclic Digraphs. In Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier, editors, 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016), volume 58 of Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1-7:11, Dagstuhl, Germany, 2016. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.MFCS.2016.7.
  3. Matthias Bentert, Fedor V. Fomin, and Petr A. Golovach. Tight approximation and kernelization bounds for vertex-disjoint shortest paths. arXiv, abs/2402.15348, 2024. URL: https://doi.org/10.48550/arXiv.2402.15348.
  4. Arnab Bhattacharyya, Édouard Bonnet, László Egri, Suprovat Ghoshal, Bingkai Lin, Pasin Manurangsi, and Dániel Marx. Parameterized intractability of even set and shortest vector problem. Journal of the ACM (JACM), 68(3):1-40, 2021. URL: https://doi.org/10.1145/3444942.
  5. Dario Giuliano Cavallaro, Ken-ichi Kawarabayashi, and Stephan Kreutzer. Edge-disjoint paths in eulerian digraphs. In Bojan Mohar, Igor Shinkar, and Ryan O'Donnell, editors, Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 704-715. ACM, 2024. URL: https://doi.org/10.1145/3618260.3649758.
  6. Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi, Danupon Nanongkai, and Luca Trevisan. From Gap-Exponential Time Hypothesis to fixed parameter tractable inapproximability: Clique, dominating set, and more. SIAM J. Comput., 49(4):772-810, 2020. URL: https://doi.org/10.1137/18M1166869.
  7. Parinya Chalermsook, Bundit Laekhanukit, and Danupon Nanongkai. Pre-reduction graph products: Hardnesses of properly learning DFAs and approximating EDP on dags. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages 444-453. IEEE, 2014. URL: https://doi.org/10.1109/FOCS.2014.54.
  8. Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. Edge-disjoint paths in planar graphs. In 45th Annual IEEE Symposium on Foundations of Computer Science, pages 71-80. IEEE, 2004. URL: https://doi.org/10.1109/FOCS.2004.27.
  9. Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. An O(√ n) approximation and integrality gap for disjoint paths and unsplittable flow. Theory of computing, 2(1):137-146, 2006. URL: https://doi.org/10.4086/TOC.2006.V002A007.
  10. Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. Edge-disjoint paths in planar graphs with constant congestion. SIAM J. Comput., 39(1):281-301, 2009. URL: https://doi.org/10.1137/060674442.
  11. Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. A note on multiflows and treewidth. Algorithmica, 54(3):400-412, 2009. URL: https://doi.org/10.1007/S00453-007-9129-Z.
  12. Rajesh Chitnis. A tight lower bound for edge-disjoint paths on planar dags. SIAM Journal on Discrete Mathematics, 37(2):556-572, 2023. URL: https://doi.org/10.1137/21M1395089.
  13. Kyungjin Cho, Eunjin Oh, and Seunghyeok Oh. Parameterized algorithm for the disjoint path problem on planar graphs: Exponential in k^2 and linear in n. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 3734-3758. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.CH144.
  14. Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat. New hardness results for routing on disjoint paths. SIAM J. Comput., 51(2):17-189, 2022. URL: https://doi.org/10.1137/17M1146580.
  15. Julia Chuzhoy, David HK Kim, and Shi Li. Improved approximation for node-disjoint paths in planar graphs. In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages 556-569, 2016. URL: https://doi.org/10.1145/2897518.2897538.
  16. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  17. Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. The planar directed k-vertex-disjoint paths problem is fixed-parameter tractable. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 197-206, 2013. URL: https://doi.org/10.1109/FOCS.2013.29.
  18. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012. Google Scholar
  19. Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. URL: https://doi.org/10.1145/1236457.1236459.
  20. Alina Ene, Matthias Mnich, Marcin Pilipczuk, and Andrej Risteski. On routing disjoint paths in bounded treewidth graphs. In Rasmus Pagh, editor, 15th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2016, June 22-24, 2016, Reykjavik, Iceland, volume 53 of LIPIcs, pages 15:1-15:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPICS.SWAT.2016.15.
  21. Andreas Emil Feldmann, Karthik C S, Euiwoong Lee, and Pasin Manurangsi. A survey on approximation in parameterized complexity: Hardness and algorithms. Algorithms, 13(6):146, 2020. URL: https://doi.org/10.3390/A13060146.
  22. Steven Fortune, John E. Hopcroft, and James Wyllie. The directed subgraph homeomorphism problem. Theor. Comput. Sci., 10:111-121, 1980. URL: https://doi.org/10.1016/0304-3975(80)90009-2.
  23. András Frank. Packing paths, cuts, and circuits - a survey. Paths, Flows and VLSI-Layout, 49:100, 1990. Google Scholar
  24. Archontia C. Giannopoulou, Ken-ichi Kawarabayashi, Stephan Kreutzer, and O-joung Kwon. Directed tangle tree-decompositions and applications. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 377-405. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.19.
  25. Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, and Kewen Wu. Parameterized inapproximability hypothesis under exponential time hypothesis. In Bojan Mohar, Igor Shinkar, and Ryan O'Donnell, editors, Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 24-35. ACM, 2024. URL: https://doi.org/10.1145/3618260.3649771.
  26. Venkatesan Guruswami, Xuandi Ren, and Sai Sandeep. Baby PIH: Parameterized Inapproximability of Min CSP. In Rahul Santhanam, editor, 39th Computational Complexity Conference (CCC 2024), volume 300 of Leibniz International Proceedings in Informatics (LIPIcs), pages 27:1-27:17, Dagstuhl, Germany, 2024. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.CCC.2024.27.
  27. Pinar Heggernes, Pim van’t Hof, Erik Jan van Leeuwen, and Reza Saei. Finding disjoint paths in split graphs. Theory of Computing Systems, 57:140-159, 2015. URL: https://doi.org/10.1007/S00224-014-9580-6.
  28. Kumar Joag-Dev and Frank Proschan. Negative association of random variables with applications. The Annals of Statistics, pages 286-295, 1983. Google Scholar
  29. Karthik C. S. and Subhash Khot. Almost polynomial factor inapproximability for parameterized k-Clique. In Shachar Lovett, editor, 37th Computational Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 6:1-6:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.CCC.2022.6.
  30. Karthik C. S., Bundit Laekhanukit, and Pasin Manurangsi. On the parameterized complexity of approximating dominating set. J. ACM, 66(5):33:1-33:38, 2019. URL: https://doi.org/10.1145/3325116.
  31. Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Stephan Kreutzer. An excluded half-integral grid theorem for digraphs and the directed disjoint paths problem. In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC '14, pages 70-78, New York, NY, USA, 2014. Association for Computing Machinery. URL: https://doi.org/10.1145/2591796.2591876.
  32. Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce Reed. The disjoint paths problem in quadratic time. Journal of Combinatorial Theory, Series B, 102(2):424-435, 2012. URL: https://doi.org/10.1016/J.JCTB.2011.07.004.
  33. Ken-ichi Kawarabayashi and Stephan Kreutzer. The directed grid theorem. In Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC '15, pages 655-664, New York, NY, USA, 2015. Association for Computing Machinery. URL: https://doi.org/10.1145/2746539.2746586.
  34. Jon M. Kleinberg and Éva Tardos. Approximations for the disjoint paths problem in high-diameter planar networks. J. Comput. Syst. Sci., 57(1):61-73, 1998. URL: https://doi.org/10.1006/JCSS.1998.1579.
  35. Stavros G Kolliopoulos and Clifford Stein. Approximating disjoint-path problems using packing integer programs. Mathematical Programming, 99(1):63-87, 2004. URL: https://doi.org/10.1007/S10107-002-0370-6.
  36. Tuukka Korhonen, Michał Pilipczuk, and Giannos Stamoulis. Minor containment and disjoint paths in almost-linear time. arXiv, abs/2404.03958, 2024 (to appear at FOCS 2024). URL: https://doi.org/10.48550/arXiv.2404.03958.
  37. Mark R. Kramer and Jan van Leeuwen. The complexity of wire-routing and finding minimum area layouts for arbitrary VLSI circuits. Advances in Computing Research, 2:129-146, 1984. Google Scholar
  38. Michael Lampis and Manolis Vasilakis. Parameterized maximum node-disjoint paths. arXiv, abs/2404.14849, 2024. URL: https://doi.org/10.48550/arXiv.2404.14849.
  39. Bingkai Lin. Constant approximating k-Clique is W[1]-hard. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1749-1756. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451016.
  40. Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. Constant approximating parameterized k-SetCover is W[2]-hard. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 3305-3316. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.CH126.
  41. Daniel Lokshtanov, Pranabendu Misra, Michał Pilipczuk, Saket Saurabh, and Meirav Zehavi. An exponential time parameterized algorithm for planar disjoint paths. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, pages 1307-1316, New York, NY, USA, 2020. Association for Computing Machinery. URL: https://doi.org/10.1145/3357713.3384250.
  42. Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Parameterized complexity and approximability of directed odd cycle transversal. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2181-2200, 2020. URL: https://doi.org/10.1137/1.9781611975994.134.
  43. Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. A parameterized approximation scheme for min k-Cut. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 798-809. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00079.
  44. James F Lynch. The equivalence of theorem proving and the interconnection problem. ACM SIGDA Newsletter, 5(3):31-36, 1975. Google Scholar
  45. Sridhar Natarajan and Alan P Sprague. Disjoint paths in circular arc graphs. Nordic Journal of Computing, 3(3):256-270, 1996. Google Scholar
  46. Richard G. Ogier, Vladislav Rutenburg, and Nachum Shacham. Distributed algorithms for computing shortest pairs of disjoint paths. IEEE Trans. Inf. Theory, 39(2):443-455, 1993. URL: https://doi.org/10.1109/18.212275.
  47. Naoto Ohsaka. On the parameterized intractability of determinant maximization. Algorithmica, pages 1-33, 2024. URL: https://doi.org/10.1007/S00453-023-01205-0.
  48. Bruce Reed. Rooted routing in the plane. Discrete Applied Mathematics, 57(2-3):213-227, 1995. URL: https://doi.org/10.1016/0166-218X(94)00104-L.
  49. Neil Robertson and Paul D Seymour. Graph minors. XIII. The disjoint paths problem. Journal of combinatorial theory, Series B, 63(1):65-110, 1995. URL: https://doi.org/10.1006/jctb.1995.1006.
  50. Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer, 2003. Google Scholar
  51. Aleksandrs Slivkins. Parameterized tractability of edge-disjoint paths on directed acyclic graphs. SIAM J. Discret. Math., 24(1):146-157, 2010. URL: https://doi.org/10.1137/070697781.
  52. Anand Srinivas and Eytan H. Modiano. Finding minimum energy disjoint paths in wireless ad-hoc networks. Wirel. Networks, 11(4):401-417, 2005. URL: https://doi.org/10.1007/S11276-005-1765-0.
  53. Michał Włodarczyk. Parameterized inapproximability for steiner orientation by gap amplification. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 104:1-104:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPICS.ICALP.2020.104.
  54. Michał Włodarczyk and Meirav Zehavi. Planar disjoint paths, treewidth, and kernels. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 649-662. IEEE, 2023. URL: https://doi.org/10.1109/FOCS57990.2023.00044.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail