Dynamic Parameterized Problems on Unit Disk Graphs

Authors Shinwoo An, Kyungjin Cho , Leo Jang, Byeonghyeon Jung, Yudam Lee, Eunjin Oh , Donghun Shin, Hyeonjun Shin , Chanho Song



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.6.pdf
  • Filesize: 1.01 MB
  • 15 pages

Document Identifiers

Author Details

Shinwoo An
  • Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea
Kyungjin Cho
  • Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea
Leo Jang
  • Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea
Byeonghyeon Jung
  • Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea
Yudam Lee
  • Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea
Eunjin Oh
  • Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea
Donghun Shin
  • Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea
Hyeonjun Shin
  • Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea
Chanho Song
  • Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Cite As Get BibTex

Shinwoo An, Kyungjin Cho, Leo Jang, Byeonghyeon Jung, Yudam Lee, Eunjin Oh, Donghun Shin, Hyeonjun Shin, and Chanho Song. Dynamic Parameterized Problems on Unit Disk Graphs. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 6:1-6:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.6

Abstract

In this paper, we study fundamental parameterized problems such as k-Path/Cycle, Vertex Cover, Triangle Hitting Set, Feedback Vertex Set, and Cycle Packing for dynamic unit disk graphs. Given a vertex set V changing dynamically under vertex insertions and deletions, our goal is to maintain data structures so that the aforementioned parameterized problems on the unit disk graph induced by V can be solved efficiently. Although dynamic parameterized problems on general graphs have been studied extensively, no previous work focuses on unit disk graphs. In this paper, we present the first data structures for fundamental parameterized problems on dynamic unit disk graphs. More specifically, our data structure supports 2^O(√k) update time and O(k) query time for k-Path/Cycle. For the other problems, our data structures support O(log n) update time and 2^O(√k) query time, where k denotes the output size.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Unit disk graphs
  • dynamic parameterized algorithms
  • kernelization

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Pankaj Agarwal, Hsien-Chih Chang, Subhash Suri, Allen Xiao, and Jie Xue. Dynamic geometric set cover and hitting set. ACM Transactions on Algorithms (TALG), 18(4):1-37, 2022. URL: https://doi.org/10.1145/3551639.
  2. Josh Alman, Matthias Mnich, and Virginia Vassilevska Williams. Dynamic parameterized problems and algorithms. ACM Transactions on Algorithms (TALG), 16(4):1-46, 2020. URL: https://doi.org/10.1145/3395037.
  3. Shinwoo An, Kyungjin Cho, and Eunjin Oh. Faster algorithms for cycle hitting problems on disk graphs. In Proceedings of the 18th Algorithms and Data Structures Symposium (WADS 2023), pages 29-42, 2023. URL: https://doi.org/10.1007/978-3-031-38906-1_3.
  4. Shinwoo An and Eunjin Oh. Feedback vertex set on geometric intersection graphs. In Proceedings of the 32nd International Symposium on Algorithms and Computation (ISAAC 2021), pages 47:1-47:12, 2021. URL: https://doi.org/10.4230/LIPICS.ISAAC.2021.47.
  5. Shinwoo An and Eunjin Oh. Reachability problems for transmission graphs. Algorithmica, 84(10):2820-2841, 2022. URL: https://doi.org/10.1007/S00453-022-00985-1.
  6. Shinwoo An and Eunjin Oh. ETH-tight algorithm for cycle packing on unit disk graphs. In Proceedings of the 40th International Symposium on Computational Geometry (SoCG 2024), pages 7:1-7:15, 2024. URL: https://doi.org/10.4230/LIPICS.SOCG.2024.7.
  7. Shinwoo An, Eunjin Oh, and Jie Xue. Sparse outerstring graphs have logarithmic treewidth. In 32nd Annual European Symposium on Algorithms (ESA 2024), pages 10:1-10:18, 2024. URL: https://doi.org/10.4230/LIPICS.ESA.2024.10.
  8. Sujoy Bhore and Timothy M. Chan. Fully dynamic geometric vertex cover and matching. arXiv preprint, 2024. URL: https://doi.org/10.48550/arXiv.2402.07441.
  9. Sujoy Bhore, Martin Nöllenburg, Csaba D. Tóth, and Jules Wulms. Fully dynamic maximum independent sets of disks in polylogarithmic update time. In Proceedings of the 40th International Symposium on Computational Geometry (SoCG 2024), pages 19:1-19:16, 2024. URL: https://doi.org/10.4230/LIPICS.SOCG.2024.19.
  10. Heinz Breu. Algorithmic aspects of constrained unit disk graphs. PhD thesis, University of British Columbia, 1996. Google Scholar
  11. Timothy M. Chan and Zhengcheng Huang. Dynamic geometric connectivity in the plane with constant query time. In Proceedings of the 40th International Symposium on Computational Geometry (SoCG 2024), pages 36:1-36:13, 2024. URL: https://doi.org/10.4230/LIPICS.SOCG.2024.36.
  12. Timothy M. Chan, Mihai Pǎtraşcu, and Liam Roditty. Dynamic connectivity: Connecting to networks and geometry. SIAM Journal on Computing, 40(2):333-349, 2011. URL: https://doi.org/10.1137/090751670.
  13. Jiehua Chen, Wojciech Czerwiński, Yann Disser, Andreas Emil Feldmann, Danny Hermelin, Wojciech Nadara, Marcin Pilipczuk, Michał Pilipczuk, Manuel Sorge, Bartłomiej Wróblewski, et al. Efficient fully dynamic elimination forests with applications to detecting long paths and cycles. In Proceedings of the 32th ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pages 796-809. SIAM, 2021. Google Scholar
  14. Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete Mathematics, 86(1-3):165-177, 1990. URL: https://doi.org/10.1016/0012-365X(90)90358-O.
  15. Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  16. Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der Zanden. A framework for exponential-time-hypothesis-tight algorithms and lower bounds in geometric intersection graphs. SIAM Journal on Computing, 49(6):1291-1331, 2020. URL: https://doi.org/10.1137/20M1320870.
  17. Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos. Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. Journal of the ACM (JACM), 52(6):866-893, 2005. URL: https://doi.org/10.1145/1101821.1101823.
  18. Zdeněk Dvořák, Martin Kupec, and Vojtěch Tůma. A dynamic data structure for MSO properties in graphs with bounded tree-depth. In Proceedings of the 22th Annual European Symposium (ESA 2014), pages 334-345, 2014. Google Scholar
  19. Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes for geometric intersection graphs. SIAM Journal on Computing, 34(6):1302-1323, 2005. URL: https://doi.org/10.1137/S0097539702402676.
  20. Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Finding, hitting and packing cycles in subexponential time on unit disk graphs. Discrete & Computational Geometry, 62:879-911, 2019. URL: https://doi.org/10.1007/S00454-018-00054-X.
  21. Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. ETH-tight algorithms for long path and cycle on unit disk graphs. Journal of Computational Geometry, 12(2):126-148, 2021. URL: https://doi.org/10.20382/JOCG.V12I2A6.
  22. Fedor V Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensionality and geometric graphs. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pages 1563-1575, 2012. URL: https://doi.org/10.1137/1.9781611973099.124.
  23. Timothy F. Havel, Gordon M. Crippen, Irwin D. Kuntz, and Jeffrey M. Blaney. The combinatorial distance geometry method for the calculation of molecular conformation ii. sample problems and computational statistics. Journal of Theoretical Biology, 104(3):383-400, 1983. Google Scholar
  24. Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing problems in image processing and VLSI. Journal of the ACM (JACM), 32(1):130-136, 1985. URL: https://doi.org/10.1145/2455.214106.
  25. Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths in grid graphs. SIAM Journal on Computing, 11(4):676-686, 1982. URL: https://doi.org/10.1137/0211056.
  26. Tuukka Korhonen, Konrad Majewski, Wojciech Nadara, Michał Pilipczuk, and Marek Sokołowski. Dynamic treewidth. In Proceedings of the 64th Annual Symposium on Foundations of Computer Science (FOCS 2023), pages 1734-1744, 2023. Google Scholar
  27. Tomasz Krawczyk and Bartosz Walczak. On-line approach to off-line coloring problems on graphs with geometric representations. Combinatorica, 37(6):1139-1179, 2017. URL: https://doi.org/10.1007/S00493-016-3414-X.
  28. Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Unit disk graph approximation. In Proceedings of the 2004 joint workshop on Foundations of mobile computing, pages 17-23, 2004. URL: https://doi.org/10.1145/1022630.1022634.
  29. Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Ad-hoc networks beyond unit disk graphs. In Proceedings of the 2003 joint workshop on Foundations of mobile computing, pages 69-78, 2003. Google Scholar
  30. Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi. Subexponential parameterized algorithms on disk graphs (extended abstract)*. In Proceedings of the 33rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2022), pages 2005-2031, 2022. URL: https://doi.org/10.1137/1.9781611977073.80.
  31. Eunjin Oh and Seunghyeok Oh. Algorithms for Computing Maximum Cliques in Hyperbolic Random Graphs. In 31st Annual European Symposium on Algorithms (ESA 2023), pages 85:1-85:15, 2023. URL: https://doi.org/10.4230/LIPICS.ESA.2023.85.
  32. János Pach and Rephael Wenger. Embedding planar graphs at fixed vertex locations. Graphs and Combinatorics, 17:717-728, 2001. URL: https://doi.org/10.1007/PL00007258.
  33. Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. In Proceedings of the 13th Annual ACM Symposium on Theory of Computing (STOC 1981), pages 114-122, 1981. Google Scholar
  34. Da-Wei Wang and Yue-Sun Kuo. A study on two geometric location problems. Information processing letters, 28(6):281-286, 1988. URL: https://doi.org/10.1016/0020-0190(88)90174-3.
  35. Hassler Whitney. Congruent graphs and the connectivity of graphs. American Journal of Mathematics, 54(1):150-168, 1932. Google Scholar
  36. Hassler Whitney. 2-isomorphic graphs. American Journal of Mathematics, 55(1):245-254, 1933. Google Scholar
  37. Weili Wu, Hongwei Du, Xiaohua Jia, Yingshu Li, and Scott C.-H. Huang. Minimum connected dominating sets and maximal independent sets in unit disk graphs. Theoretical Computer Science, 352(1-3):1-7, 2006. URL: https://doi.org/10.1016/J.TCS.2005.08.037.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail