Lower Bounds for Adaptive Relaxation-Based Algorithms for Single-Source Shortest Paths

Authors Sunny Atalig, Alexander Hickerson, Arrdya Srivastav, Tingting Zheng, Marek Chrobak



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.8.pdf
  • Filesize: 1.07 MB
  • 16 pages

Document Identifiers

Author Details

Sunny Atalig
  • University of California, Riverside, CA, USA
Alexander Hickerson
  • University of California, Riverside, CA, USA
Arrdya Srivastav
  • University of California, Riverside, CA, USA
Tingting Zheng
  • Guangdong University of Technology, Guangzhou, China
Marek Chrobak
  • University of California, Riverside, CA, USA

Cite As Get BibTex

Sunny Atalig, Alexander Hickerson, Arrdya Srivastav, Tingting Zheng, and Marek Chrobak. Lower Bounds for Adaptive Relaxation-Based Algorithms for Single-Source Shortest Paths. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 8:1-8:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.8

Abstract

We consider the classical single-source shortest path problem in directed weighted graphs. D. Eppstein proved recently an Ω(n³) lower bound for oblivious algorithms that use relaxation operations to update the tentative distances from the source vertex. We generalize this result by extending this Ω(n³) lower bound to adaptive algorithms that, in addition to relaxations, can perform queries involving some simple types of linear inequalities between edge weights and tentative distances. Our model captures as a special case the operations on tentative distances used by Dijkstra’s algorithm.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
Keywords
  • single-source shortest paths
  • lower bounds
  • decision trees

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Michael J. Bannister and David Eppstein. Randomized speedup of the Bellman-Ford algorithm. In Proceedings of the 9th Meeting on Analytic Algorithmics and Combinatorics, ANALCO 2012, pages 41-47. SIAM, 2012. URL: https://doi.org/10.1137/1.9781611973020.6.
  2. Richard Bellman. On a routing problem. Quart. Appl. Math., 16:87-90, 1958. Google Scholar
  3. Aaron Bernstein, Danupon Nanongkai, and Christian Wulff-Nilsen. Negative-weight single-source shortest paths in near-linear time. In Proceedings of the 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, pages 600-611, 2022. URL: https://doi.org/10.1109/FOCS54457.2022.00063.
  4. Béla Bollobás and Oleg Pikhurko. Integer sets with prescribed pairwise differences being distinct. European Journal of Combinatorics, 26(5):607-616, 2005. URL: https://doi.org/10.1016/J.EJC.2004.04.008.
  5. Gang Cheng and Nirwan Ansari. Finding all hops shortest paths. IEEE Commun. Lett., 8(2):122-124, 2004. URL: https://doi.org/10.1109/LCOMM.2004.823365.
  6. Michael B. Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. Negative-weight shortest paths and unit capacity minimum cost flow in Õ(m^10/7 log W) time (extended abstract). In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 752-771, 2017. URL: https://doi.org/10.1137/1.9781611974782.48.
  7. Narsingh Deo and Chi-Yin Pang. Shortest-path algorithms: Taxonomy and annotation. Networks, 14(2):275-323, 1984. URL: https://doi.org/10.1002/NET.3230140208.
  8. Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1(1):269-271, 1959. URL: https://doi.org/10.1007/BF01386390.
  9. David Eppstein. Lower bounds for non-adaptive shortest path relaxation. In Proceedings of the 18th International Symposium on Algorithms and Data Structures, WADS 2023, pages 416-429, 2023. URL: https://doi.org/10.1007/978-3-031-38906-1_27.
  10. P. Erdös and P. Turán. On a problem of Sidon in additive number theory, and on some related problems. Journal of the London Mathematical Society, s1-16(4):212-215, 1941. Google Scholar
  11. Jeremy T. Fineman. Single-source shortest paths with negative real weights in Õ(mn^8/9) time. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, pages 3-14, 2024. URL: https://doi.org/10.1145/3618260.3649614.
  12. L. R. Ford. Network Flow Theory. RAND Corporation, Santa Monica, CA, 1956. Google Scholar
  13. Andrew V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM Journal on Computing, 24(3):494-504, 1995. URL: https://doi.org/10.1137/S0097539792231179.
  14. Roch Guérin and Ariel Orda. Computing shortest paths for any number of hops. IEEE/ACM Trans. Netw., 10(5):613-620, 2002. URL: https://doi.org/10.1109/TNET.2002.803917.
  15. Jialu Hu and László Kozma. Non-adaptive Bellman-Ford: Yen’s improvement is optimal. CoRR, abs/2402.10343, 2024. https://arxiv.org/abs/2402.10343, URL: https://doi.org/10.48550/arXiv.2402.10343.
  16. Stasys Jukna and Georg Schnitger. On the optimality of Bellman-Ford-Moore shortest path algorithm. Theor. Comput. Sci., 628:101-109, 2016. URL: https://doi.org/10.1016/J.TCS.2016.03.014.
  17. Tomasz Kociumaka and Adam Polak. Bellman-Ford is optimal for shortest hop-bounded paths. In Proceedings of the 31st Annual European Symposium on Algorithms, ESA 2023, pages 72:1-72:10, 2023. URL: https://doi.org/10.4230/LIPICS.ESA.2023.72.
  18. Ulrich Meyer, Andrei Negoescu, and Volker Weichert. New bounds for old algorithms: On the average-case behavior of classic single-source shortest-paths approaches. In Proceedings of the First International ICST Conference on Theory and Practice of Algorithms in (Computer) Systems, TAPAS 2011, pages 217-228, 2011. URL: https://doi.org/10.1007/978-3-642-19754-3_22.
  19. E. F. Moore. The shortest path through a maze. In Proceedings of an International Symposium on the Theory of Switching, Part II, pages 285-292, 1959. Google Scholar
  20. A. Shimbel. Structure in communication nets. In Proceedings of the Symposium on Information Networks, pages 199-203. Polytechnic Press of the Polytechnic Institute of Brooklyn, 1955. Google Scholar
  21. James Singer. A theorem in finite projective geometry and some applications to number theory. Trans. Amer. Math. Soc., 43(3):377-385, 1938. Google Scholar
  22. Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity (extended abstract). In Proceedings of the 18th Annual Symposium on Foundations of Computer Science, pages 222-227, 1977. URL: https://doi.org/10.1109/SFCS.1977.24.
  23. Y. Yen. Shortest Path Network Problems, volume 18 of Mathematical Systems in Economics. Verlag Anton Hain, Meisenheim am Glan, 1975. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail