Fault-Tolerant Bounded Flow Preservers

Authors Shivam Bansal, Keerti Choudhary , Harkirat Dhanoa, Harsh Wardhan



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.9.pdf
  • Filesize: 1.06 MB
  • 14 pages

Document Identifiers

Author Details

Shivam Bansal
  • Department of Computer Science and Engineering, IIT Delhi, India
Keerti Choudhary
  • Department of Computer Science and Engineering, IIT Delhi, India
Harkirat Dhanoa
  • Department of Computer Science and Engineering, IIT Delhi, India
Harsh Wardhan
  • Department of Electrical Engineering, IIT Delhi, India

Cite As Get BibTex

Shivam Bansal, Keerti Choudhary, Harkirat Dhanoa, and Harsh Wardhan. Fault-Tolerant Bounded Flow Preservers. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 9:1-9:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.9

Abstract

Given a directed graph G = (V, E) with n vertices, m edges and a designated source vertex s ∈ V, we consider the question of finding a sparse subgraph H of G that preserves the flow from s up to a given threshold λ even after failure of k edges. We refer to such subgraphs as (λ,k)-fault-tolerant bounded-flow-preserver ((λ,k)-FT-BFP). Formally, for any F ⊆ E of at most k edges and any v ∈ V, the (s, v)-max-flow in H⧵F is equal to (s, v)-max-flow in G⧵F, if the latter is bounded by λ, and at least λ otherwise. Our contributions are summarized as follows:
1) We provide a polynomial time algorithm that given any graph G constructs a (λ,k)-FT-BFP of G with at most λ 2^kn edges. 
2) We also prove a matching lower bound of Ω(λ 2^kn) on the size of (λ,k)-FT-BFP. In particular, we show that for every λ,k,n ⩾ 1, there exists an n-vertex directed graph whose optimal (λ,k)-FT-BFP contains Ω(min{2^kλ n, n²}) edges.
3) Furthermore, we show that the problem of computing approximate (λ,k)-FT-BFP is NP-hard for any approximation ratio that is better than O(log(λ^{-1} n)).

Subject Classification

ACM Subject Classification
  • Theory of computation → Data structures design and analysis
  • Mathematics of computing → Graph algorithms
Keywords
  • Fault-tolerant Data-structures
  • Max-flow
  • Bounded Flow Preservers

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Amir Abboud, Loukas Georgiadis, Giuseppe F. Italiano, Robert Krauthgamer, Nikos Parotsidis, Ohad Trabelsi, Przemyslaw Uznanski, and Daniel Wolleb-Graf. Faster algorithms for all-pairs bounded min-cuts. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, volume 132 of LIPIcs, pages 7:1-7:15, 2019. URL: https://doi.org/10.4230/LIPICS.ICALP.2019.7.
  2. Surender Baswana, Koustav Bhanja, and Abhyuday Pandey. Minimum+1 (s, t)-cuts and dual edge sensitivity oracle. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 15:1-15:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.ICALP.2022.15.
  3. Surender Baswana, Shreejit Ray Chaudhury, Keerti Choudhary, and Shahbaz Khan. Dynamic DFS in undirected graphs: Breaking the o(m) barrier. SIAM J. Comput., 48(4):1335-1363, 2019. URL: https://doi.org/10.1137/17M114306X.
  4. Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault-tolerant subgraph for single-source reachability: General and optimal. SIAM Journal on Computing, 47(1):80-95, 2018. URL: https://doi.org/10.1137/16M1087643.
  5. Surender Baswana and Neelesh Khanna. Approximate shortest paths avoiding a failed vertex: Near optimal data structures for undirected unweighted graphs. Algorithmica, 66(1):18-50, 2013. URL: https://doi.org/10.1007/S00453-012-9621-Y.
  6. Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Multiple-edge-fault-tolerant approximate shortest-path trees. In 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, pages 18:1-18:14, 2016. URL: https://doi.org/10.4230/LIPICS.STACS.2016.18.
  7. Shiri Chechik. Fault-tolerant compact routing schemes for general graphs. Inf. Comput., 222:36-44, 2013. URL: https://doi.org/10.1016/J.IC.2012.10.009.
  8. Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. Fault-tolerant spanners for general graphs. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pages 435-444, 2009. URL: https://doi.org/10.1145/1536414.1536475.
  9. Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. f-sensitivity distance oracles and routing schemes. In 18th Annual European Symposium on Algorithms - ESA (1), pages 84-96, 2010. URL: https://doi.org/10.1007/978-3-642-15775-2_8.
  10. Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 612-623. IEEE, 2022. URL: https://doi.org/10.1109/FOCS54457.2022.00064.
  11. Keerti Choudhary. An optimal dual fault tolerant reachability oracle. In 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, pages 130:1-130:13, 2016. URL: https://doi.org/10.4230/LIPICS.ICALP.2016.130.
  12. Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ramachandran. Oracles for distances avoiding a failed node or link. SIAM J. Comput., 37(5):1299-1318, 2008. URL: https://doi.org/10.1137/S0097539705429847.
  13. Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: better and simpler. In Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing, PODC 2011, pages 169-178, 2011. URL: https://doi.org/10.1145/1993806.1993830.
  14. Ran Duan and Seth Pettie. Dual-failure distance and connectivity oracles. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, pages 506-515, 2009. URL: https://doi.org/10.1137/1.9781611973068.56.
  15. D. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, 2010. Google Scholar
  16. Loukas Georgiadis, Daniel Graf, Giuseppe F. Italiano, Nikos Parotsidis, and Przemyslaw Uznanski. All-pairs 2-reachability in o(n^w log n) time. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 74:1-74:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.ICALP.2017.74.
  17. Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. A brief note on single source fault tolerant reachability, 2019. URL: https://arxiv.org/abs/1904.08150.
  18. Dana Moshkovitz. The projection games conjecture and the np-hardness of ln n-approximating set-cover. In Anupam Gupta, Klaus Jansen, José Rolim, and Rocco Servedio, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 276-287, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-642-32512-0_24.
  19. Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse k-connected spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583-596, 1992. URL: https://doi.org/10.1007/BF01758778.
  20. Merav Parter. Dual failure resilient BFS structure. In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, pages 481-490, 2015. URL: https://doi.org/10.1145/2767386.2767408.
  21. Merav Parter and David Peleg. Sparse fault-tolerant BFS trees. In Algorithms - ESA 2013 - 21st Annual European Symposium, Proceedings, pages 779-790, 2013. URL: https://doi.org/10.1007/978-3-642-40450-4_66.
  22. Merav Parter and David Peleg. Fault tolerant approximate BFS structures. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pages 1073-1092, 2014. URL: https://doi.org/10.1137/1.9781611973402.80.
  23. Jan van den Brand and Thatchaphol Saranurak. Sensitive distance and reachability oracles for large batch updates. In 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 424-435, 2019. URL: https://doi.org/10.1109/FOCS.2019.00034.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail