,
Leonidas Theocharous
Creative Commons Attribution 4.0 International license
The presence of obstacles has a significant impact on distance computation, motion-planning, and visibility. These problems have been studied extensively in the planar setting, while our understanding of these problems in 3- and higher-dimensional spaces is still rudimentary. In this paper, we study the impact of different types of obstacles on the induced geodesic metric in 3-dimensional Euclidean space. We say that a finite metric space (X, dist_X) is approximately realizable by a collection 𝒯 of obstacles in ℝ³ if for any ε > 0 it can be embedded into (ℝ³⧵⋃_{T∈𝒯} T, dist_𝒯) with worst-case multiplicative distortion 1+ε, where dist_𝒯 denotes the geodesic distance in the free space induced by 𝒯. We focus on three key geometric properties of obstacles -convexity, disjointness, and fatness- and examine how dropping each one of them affects the existence of such embeddings.
Our main result concerns dropping the fatness property: we demonstrate that any finite metric space is realizable with 1+ε worst-case multiplicative distortion using a collection of convex and pairwise disjoint obstacles in ℝ³, even if the obstacles are congruent and equilateral triangles. Based on the same construction, we can also show that if we require fatness but drop any of the other two properties instead, then we can still approximately realize any finite metric space.
Our results have important implications on the approximability of tsp with obstacles, a natural variant of tsp introduced recently by Alkema et al. (ESA 2022). Specifically, we use the recent results of Banerjee et al. on tsp in doubling spaces (FOCS 2024) and of Chew et al. on distances among obstacles (Inf. Process. Lett. 2002) to show that tsp with obstacles admits a PTAS if the obstacles are convex, fat, and pairwise disjoint. If any of these three properties is dropped, then our results, combined with the APX-hardness of Metric tsp, demonstrate that tsp with obstacles is APX-hard.
@InProceedings{kisfaludibak_et_al:LIPIcs.ISAAC.2025.46,
author = {Kisfaludi-Bak, S\'{a}ndor and Theocharous, Leonidas},
title = {{Realizing Metric Spaces with Convex Obstacles}},
booktitle = {36th International Symposium on Algorithms and Computation (ISAAC 2025)},
pages = {46:1--46:21},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-408-6},
ISSN = {1868-8969},
year = {2025},
volume = {359},
editor = {Chen, Ho-Lin and Hon, Wing-Kai and Tsai, Meng-Tsung},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2025.46},
URN = {urn:nbn:de:0030-drops-249545},
doi = {10.4230/LIPIcs.ISAAC.2025.46},
annote = {Keywords: traveling salesman, geodesic distance}
}