Communication Complexity vs Randomness Complexity in Interactive Proofs

Authors Benny Applebaum, Kaartik Bhushan, Manoj Prabhakaran



PDF
Thumbnail PDF

File

LIPIcs.ITC.2024.2.pdf
  • Filesize: 0.68 MB
  • 16 pages

Document Identifiers

Author Details

Benny Applebaum
  • Tel-Aviv University, Israel
Kaartik Bhushan
  • IIT Bombay, India
Manoj Prabhakaran
  • IIT Bombay, India

Acknowledgements

We thank Gil Segev for valuable discussions about perfect hashing. Part of the research was done while the second author visited Tel Aviv University.

Cite As Get BibTex

Benny Applebaum, Kaartik Bhushan, and Manoj Prabhakaran. Communication Complexity vs Randomness Complexity in Interactive Proofs. In 5th Conference on Information-Theoretic Cryptography (ITC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 304, pp. 2:1-2:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ITC.2024.2

Abstract

In this work, we study the interplay between the communication from a verifier in a general private-coin interactive protocol and the number of random bits it uses in the protocol. Under worst-case derandomization assumptions, we show that it is possible to transform any I-round interactive protocol that uses ρ random bits into another one for the same problem with the additional property that the verifier’s communication is bounded by O(I⋅ ρ). Importantly, this is done with a minor, logarithmic, increase in the communication from the prover to the verifier and while preserving the randomness complexity. Along the way, we introduce a new compression game between computationally-bounded compressor and computationally-unbounded decompressor and a new notion of conditioned efficient distributions that may be of independent interest. Our solutions are based on a combination of perfect hashing and pseudorandom generators.

Subject Classification

ACM Subject Classification
  • Theory of computation → Interactive proof systems
Keywords
  • Interactive Proof Systems
  • Communication Complexity
  • Hash Functions
  • Pseudo-Random Generators
  • Compression

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Benny Applebaum, Sergei Artemenko, Ronen Shaltiel, and Guang Yang. Incompressible functions, relative-error extractors, and the power of nondeterministic reductions. Comput. Complex., 25(2):349-418, 2016. URL: https://doi.org/10.1007/S00037-016-0128-9.
  2. Benny Applebaum and Eyal Golombek. On the Randomness Complexity of Interactive Proofs and Statistical Zero-Knowledge Proofs. In Stefano Tessaro, editor, 2nd Conference on Information-Theoretic Cryptography (ITC 2021), volume 199 of Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1-4:23, Dagstuhl, Germany, 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ITC.2021.4.
  3. S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University Press, 2006. URL: https://theory.cs.princeton.edu/complexity/book.pdf.
  4. László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system, and a hierarchy of complexity class. J. Comput. Syst. Sci., 36(2):254-276, April 1988. URL: https://doi.org/10.1016/0022-0000(88)90028-1.
  5. Marshall Ball, Ronen Shaltiel, and Jad Silbak. Non-malleable codes with optimal rate for poly-size circuits. Electron. Colloquium Comput. Complex., TR23-167, 2023. URL: https://arxiv.org/abs/TR23-167.
  6. Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryptography. SIAM J. Comput., 37(2):380-400, 2007. Google Scholar
  7. J.Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of Computer and System Sciences, 18(2):143-154, 1979. URL: https://doi.org/10.1016/0022-0000(79)90044-8.
  8. Andrew Drucker. Nondeterministic direct product reductions and the success probability of SAT solvers. In FOCS, pages 736-745. IEEE Computer Society, 2013. Google Scholar
  9. Uriel Feige and Carsten Lund. On the hardness of computing the permanent of random matrices. Computational Complexity, 6(2):101-132, 1997. Google Scholar
  10. Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with O(1) worst case access time. J. ACM, 31(3):538-544, June 1984. URL: https://doi.org/10.1145/828.1884.
  11. Oded Goldreich. On promise problems: A survey. In Oded Goldreich, Arnold L. Rosenberg, and Alan L. Selman, editors, Theoretical Computer Science, Essays in Memory of Shimon Even, volume 3895 of Lecture Notes in Computer Science, pages 254-290. Springer, 2006. URL: https://doi.org/10.1007/11685654_12.
  12. Oded Goldreich. Computational complexity - a conceptual perspective. Cambridge University Press, 2008. URL: https://doi.org/10.1017/CBO9780511804106.
  13. Oded Goldreich and Maya Leshkowitz. On Emulating Interactive Proofs with Public Coins, pages 178-198. Springer International Publishing, Cham, 2020. URL: https://doi.org/10.1007/978-3-030-43662-9_12.
  14. Oded Goldreich and Avi Wigderson. Derandomization that is rarely wrong from short advice that is typically good. In RANDOM, volume 2483 of Lecture Notes in Computer Science, pages 209-223. Springer, 2002. Google Scholar
  15. S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of interactive proof-systems. In Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC '85, pages 291-304, New York, NY, USA, 1985. Association for Computing Machinery. URL: https://doi.org/10.1145/22145.22178.
  16. S Goldwasser and M Sipser. Private coins versus public coins in interactive proof systems. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC '86, pages 59-68, New York, NY, USA, 1986. Association for Computing Machinery. URL: https://doi.org/10.1145/12130.12137.
  17. Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. Uniform hardness versus randomness tradeoffs for arthur-merlin games. Computational Complexity, 12(3-4):85-130, 2003. Google Scholar
  18. Russell Impagliazzo and Avi Wigderson. P = bpp if e requires exponential circuits: Derandomizing the xor lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, STOC '97, pages 220-229, New York, NY, USA, 1997. Association for Computing Machinery. URL: https://doi.org/10.1145/258533.258590.
  19. Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial structures from a uniform distribution. Theor. Comput. Sci., 43:169-188, 1986. Google Scholar
  20. Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501-1526, 2002. Google Scholar
  21. Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses. SIAM Journal on Computing, 31(5):1501-1526, 2002. URL: https://doi.org/10.1137/S0097539700389652.
  22. Maya Leshkowitz. Round complexity versus randomness complexity in interactive proofs. Theory Comput., 18:1-65, 2022. URL: https://theoryofcomputing.org/articles/v018a013/.
  23. Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for interactive proof systems. J. ACM, 39(4):859-868, October 1992. URL: https://doi.org/10.1145/146585.146605.
  24. Peter Bro Miltersen and N. V. Vinodchandran. Derandomizing arthur-merlin games using hitting sets. Computational Complexity, 14(3):256-279, 2005. Google Scholar
  25. Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-optimal derandomization. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23-25 October 1995, pages 182-191. IEEE Computer Society, 1995. URL: https://doi.org/10.1109/SFCS.1995.492475.
  26. A. Orlitsky. Worst-case interactive communication. i. two messages are almost optimal. IEEE Transactions on Information Theory, 36(5):1111-1126, 1990. URL: https://doi.org/10.1109/18.57210.
  27. Rasmus Pagh. Hash and displace: Efficient evaluation of minimal perfect hash functions. In Frank K. H. A. Dehne, Arvind Gupta, Jörg-Rüdiger Sack, and Roberto Tamassia, editors, Algorithms and Data Structures, 6th International Workshop, WADS '99, Vancouver, British Columbia, Canada, August 11-14, 1999, Proceedings, volume 1663 of Lecture Notes in Computer Science, pages 49-54. Springer, 1999. URL: https://doi.org/10.1007/3-540-48447-7_5.
  28. Ronen Shaltiel. Weak derandomization of weak algorithms: Explicit versions of yao’s lemma. Comput. Complex., 20(1):87-143, 2011. URL: https://doi.org/10.1007/S00037-011-0006-4.
  29. Ronen Shaltiel and Jad Silbak. Explicit codes for poly-size circuits and functions that are hard to sample on low entropy distributions. Electron. Colloquium Comput. Complex., TR23-149, 2023. URL: https://arxiv.org/abs/TR23-149.
  30. Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and a new pseudorandom generator. J. ACM, 52(2):172-216, 2005. Google Scholar
  31. Ronen Shaltiel and Christopher Umans. Pseudorandomness for approximate counting and sampling. Computational Complexity, 15(4):298-341, 2006. Google Scholar
  32. Ronen Shaltiel and Christopher Umans. Low-end uniform hardness versus randomness tradeoffs for AM. SIAM J. Comput., 39(3):1006-1037, 2009. Google Scholar
  33. Adi Shamir. Ip = pspace. J. ACM, 39(4):869-877, October 1992. URL: https://doi.org/10.1145/146585.146609.
  34. Claude E. Shannon. A mathematical theory of communication. Bell Syst. Tech. J., 27(3):379-423, 1948. URL: https://doi.org/10.1002/J.1538-7305.1948.TB01338.X.
  35. Michael Sipser. A complexity theoretic approach to randomness. In STOC, pages 330-335. ACM, 1983. Google Scholar
  36. Larry J. Stockmeyer. The complexity of approximate counting (preliminary version). In STOC, pages 118-126. ACM, 1983. Google Scholar
  37. Luca Trevisan and Salil P. Vadhan. Extracting randomness from samplable distributions. In FOCS, pages 32-42. IEEE Computer Society, 2000. Google Scholar
  38. Luca Trevisan, Salil P. Vadhan, and David Zuckerman. Compression of samplable sources. Comput. Complex., 14(3):186-227, 2005. URL: https://doi.org/10.1007/S00037-005-0198-6.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail