We obtain a new protocol for binary counting in the ε-DP_shuffle model with error O(1/ε) and expected communication Õ((log n)/ε) messages per user. Previous protocols incur either an error of O(1/ε^1.5) with O_ε(log n) messages per user (Ghazi et al., ITC 2020) or an error of O(1/ε) with O_ε(n²) messages per user (Cheu and Yan, TPDP 2022). Using the new protocol, we obtained improved ε-DP_shuffle protocols for real summation and histograms.
@InProceedings{ghazi_et_al:LIPIcs.ITC.2024.4, author = {Ghazi, Badih and Kumar, Ravi and Manurangsi, Pasin}, title = {{Pure-DP Aggregation in the Shuffle Model: Error-Optimal and Communication-Efficient}}, booktitle = {5th Conference on Information-Theoretic Cryptography (ITC 2024)}, pages = {4:1--4:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-333-1}, ISSN = {1868-8969}, year = {2024}, volume = {304}, editor = {Aggarwal, Divesh}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2024.4}, URN = {urn:nbn:de:0030-drops-205127}, doi = {10.4230/LIPIcs.ITC.2024.4}, annote = {Keywords: Differential Privacy, Shuffle Model, Aggregation, Pure Differential Privacy} }
Feedback for Dagstuhl Publishing