LIPIcs.ITCS.2019.19.pdf
- Filesize: 394 kB
- 7 pages
It is known since the work of [Aaronson and Ambainis, 2014] that for any permutation symmetric function f, the quantum query complexity is at most polynomially smaller than the classical randomized query complexity, more precisely that R(f) = O~(Q^7(f)). In this paper, we improve this result and show that R(f) = O(Q^3(f)) for a more general class of symmetric functions. Our proof is constructive and relies largely on the quantum hardness of distinguishing a random permutation from a random function with small range from Zhandry [Zhandry, 2015].
Feedback for Dagstuhl Publishing