The Chromatic Number of Kneser Hypergraphs via Consensus Division

Author Ishay Haviv



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2024.60.pdf
  • Filesize: 0.73 MB
  • 17 pages

Document Identifiers

Author Details

Ishay Haviv
  • School of Computer Science, The Academic College of Tel Aviv-Yaffo, Israel

Acknowledgements

We are grateful to Aris Filos-Ratsikas for a fruitful discussion and for a clarification on [Argyrios Deligkas et al., 2022] and to the anonymous reviewers for their useful comments.

Cite AsGet BibTex

Ishay Haviv. The Chromatic Number of Kneser Hypergraphs via Consensus Division. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 60:1-60:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ITCS.2024.60

Abstract

We show that the Consensus Division theorem implies lower bounds on the chromatic number of Kneser hypergraphs, offering a novel proof for a result of Alon, Frankl, and Lovász (Trans. Amer. Math. Soc., 1986) and for its generalization by Kriz (Trans. Amer. Math. Soc., 1992). Our approach is applied to study the computational complexity of the total search problem Kneser^p, which given a succinct representation of a coloring of a p-uniform Kneser hypergraph with fewer colors than its chromatic number, asks to find a monochromatic hyperedge. We prove that for every prime p, the Kneser^p problem with an extended access to the input coloring is efficiently reducible to a quite weak approximation of the Consensus Division problem with p shares. In particular, for p = 2, the problem is efficiently reducible to any non-trivial approximation of the Consensus Halving problem on normalized monotone functions. We further show that for every prime p, the Kneser^p problem lies in the complexity class PPA-p. As an application, we establish limitations on the complexity of the Kneser^p problem, restricted to colorings with a bounded number of colors.

Subject Classification

ACM Subject Classification
  • Theory of computation → Problems, reductions and completeness
  • Mathematics of computing → Graph theory
Keywords
  • Kneser hypergraphs
  • consensus division
  • the complexity classes PPA-p

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Meysam Alishahi and Hossein Hajiabolhassan. On the chromatic number of general Kneser hypergraphs. J. Comb. Theory, Ser. B, 115:186-209, 2015. Google Scholar
  2. Noga Alon. Splitting necklaces. Adv. Math., 63(3):247-253, 1987. Google Scholar
  3. Noga Alon, Peter Frankl, and László Lovász. The chromatic number of Kneser hypergraphs. Trans. Amer. Math. Soc., 298(1):359-370, 1986. Google Scholar
  4. Noga Alon and Andrei Graur. Efficient splitting of necklaces. In Proc. of the 48th International Colloquium on Automata, Languages, and Programming, (ICALP'21), pages 14:1-14:17, 2021. Google Scholar
  5. Jai Aslam, Shuli Chen, Ethan Coldren, Florian Frick, and Linus Setiabrata. On the generalized Erdös-Kneser conjecture: Proofs and reductions. J. Comb. Theory, Ser. B, 135:227-237, 2019. Google Scholar
  6. Imre Bárány, Senya B. Shlosman, and András Szücs. On a topological generalization of a theorem of Tverberg. J. London Math. Soc., s2-23(1):158-164, 1981. Google Scholar
  7. Karol Borsuk. Drei Sätze über die n-dimensionale euklidische Sphäre. Fundamenta Mathematicae, 20(1):177-190, 1933. Google Scholar
  8. Argyrios Deligkas, John Fearnley, Alexandros Hollender, and Themistoklis Melissourgos. Constant inapproximability for PPA. In Proc. of the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC'22), pages 1010-1023, 2022. Google Scholar
  9. Argyrios Deligkas, Aris Filos-Ratsikas, and Alexandros Hollender. Two’s company, three’s a crowd: Consensus-halving for a constant number of agents. Artif. Intell., 313(C):103784, 2022. Preliminary version in EC'21. Google Scholar
  10. Xiaotie Deng, Zhe Feng, and Rucha Kulkarni. Octahedral Tucker is PPA-complete. Electronic Colloquium on Computational Complexity (ECCC), 24:118, 2017. Google Scholar
  11. Albrecht Dold. Simple proofs of some Borsuk-Ulam results. Contemp. Math., 19:65-69, 1983. Google Scholar
  12. Vladimir Dol’nikov. Transversals of families of sets. In Studies in the theory of functions of several real variables (Russian), volume 29, pages 30-36. Yaroslavl', 1981. Google Scholar
  13. Paul Erdös. Problems and results in combinatorial analysis. Colloq. int. Teorie comb., Roma 1973, pages 3-17, 1976. Google Scholar
  14. Aris Filos-Ratsikas and Paul W. Goldberg. Consensus halving is PPA-complete. In Proc. of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC'18), pages 51-64, 2018. Google Scholar
  15. Aris Filos-Ratsikas and Paul W. Goldberg. The complexity of splitting necklaces and bisecting ham sandwiches. In Proc. of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC'19), pages 638-649, 2019. Google Scholar
  16. Aris Filos-Ratsikas, Alexandros Hollender, Katerina Sotiraki, and Manolis Zampetakis. A topological characterization of modulo-p arguments and implications for necklace splitting. In Proc. of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA'21), pages 2615-2634, 2021. Google Scholar
  17. Aris Filos-Ratsikas, Alexandros Hollender, Katerina Sotiraki, and Manolis Zampetakis. Consensus-halving: Does it ever get easier? SIAM J. Comput., 52(2):412-451, 2023. Preliminary version in EC'20. Google Scholar
  18. Florian Frick. Chromatic numbers of stable Kneser hypergraphs via topological Tverberg-type theorems. Int. Math. Res. Not., 2020(13):4037-4061, 2020. Google Scholar
  19. Paul Goldberg and Jiawei Li. Consensus division in an arbitrary ratio. In Proc. of the 14th Innovations in Theoretical Computer Science Conference (ITCS'23), pages 57:1-57:18, 2023. Google Scholar
  20. Paul W. Goldberg, Alexandros Hollender, Ayumi Igarashi, Pasin Manurangsi, and Warut Suksompong. Consensus halving for sets of items. Math. Oper. Res., 47(4):2547-3399, 2022. Preliminary version in WINE'20. Google Scholar
  21. Mika Göös, Pritish Kamath, Katerina Sotiraki, and Manolis Zampetakis. On the complexity of modulo-q arguments and the Chevalley-Warning theorem. In Proc. of the 35th Computational Complexity Conference (CCC'20), pages 19:1-19:42, 2020. Google Scholar
  22. Ishay Haviv. The complexity of finding fair independent sets in cycles. Comput. Complex., 31(2):14, 2022. Preliminary version in ITCS'21. Google Scholar
  23. Ishay Haviv. A fixed-parameter algorithm for the Kneser problem. In Proc. of the 49th International Colloquium on Automata, Languages, and Programming (ICALP'22), pages 72:1-72:18, 2022. Google Scholar
  24. Ishay Haviv. On finding constrained independent sets in cycles. In Proc. of the 50th International Colloquium on Automata, Languages, and Programming (ICALP'23), pages 73:1-73:16, 2023. Google Scholar
  25. Charles R. Hobby and John R. Rice. A moment problem in L₁ approximation. Proc. Amer. Math. Soc., 16(4):665-670, 1965. Google Scholar
  26. Alexandros Hollender. The classes PPA-k: Existence from arguments modulo k. Theor. Comput. Sci., 885:15-29, 2021. Preliminary version in WINE'19. Google Scholar
  27. Martin Kneser. Aufgabe 360. Jahresbericht der Deutschen Mathematiker-Vereinigung, 58(2):27, 1955. Google Scholar
  28. Igor Kriz. Equivariant cohomology and lower bounds for chromatic numbers. Trans. Amer. Math. Soc., 333(2):567-577, 1992. Google Scholar
  29. László Lovász. Kneser’s conjecture, chromatic number, and homotopy. J. Comb. Theory, Ser. A, 25(3):319-324, 1978. Google Scholar
  30. Jiří Matoušek. A combinatorial proof of Kneser’s conjecture. Combinatorica, 24(1):163-170, 2004. Google Scholar
  31. Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence theorems and computational complexity. Theor. Comput. Sci., 81(2):317-324, 1991. Google Scholar
  32. Frédéric Meunier. The chromatic number of almost stable Kneser hypergraphs. J. Comb. Theory, Ser. A, 118(6):1820-1828, 2011. Google Scholar
  33. Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs of existence. J. Comput. Syst. Sci., 48(3):498-532, 1994. Google Scholar
  34. Alexander Schrijver. Vertex-critical subgraphs of Kneser graphs. Nieuw Arch. Wiskd., 26(3):454-461, 1978. Google Scholar
  35. Forest W. Simmons and Francis Edward Su. Consensus-halving via theorems of Borsuk-Ulam and Tucker. Math. Soc. Sci., 45(1):15-25, 2003. Google Scholar
  36. Günter M. Ziegler. Generalized Kneser coloring theorems with combinatorial proofs. Invent. Math., 147(3):671-691, 2002. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail