LIPIcs.ITCS.2024.84.pdf
- Filesize: 0.92 MB
- 22 pages
In budget-feasible mechanism design, a buyer wishes to procure a set of items of maximum value from self-interested rational players. We are given an item-set U and a nonnegative valuation function v: 2^U ↦ ℝ_+. Each item e is held by a player who incurs a private cost c_e for supplying item e. The goal is to devise a truthful mechanism such that the total payment made to the players is at most some given budget B, and the value of the set returned is a good approximation to OPT: = max {v(S): c(S) ≤ B, S ⊆ U}. We call such a mechanism a budget-feasible mechanism. More generally, there may be additional side constraints requiring that the set returned lies in some downwards-monotone family ℐ ⊆ 2^U. Budget-feasible mechanisms have been widely studied, but there are still significant gaps in our understanding of these mechanisms, both in terms of what kind of oracle access to the valuation is required to obtain good approximation ratios, and the best approximation ratio that can be achieved. We substantially advance the state of the art of budget-feasible mechanisms by devising mechanisms that are simpler, and also better, both in terms of requiring weaker oracle access and the approximation factors they obtain. For XOS valuations, we devise the first polytime O(1)-approximation budget-feasible mechanism using only demand oracles, and also significantly improve the approximation factor. For subadditive valuations, we give the first explicit construction of an O(1)-approximation mechanism, where previously only an existential result was known. We also introduce a fairly rich class of mechanism-design problems that we dub using the umbrella term generalized budget-feasible mechanism design, which allow one to capture payment constraints that are much-more nuanced than a single constraint on the total payment doled out. We demonstrate the versatility of our ideas by showing that our constructions can be adapted to yield approximation guarantees in such general settings as well. A prominent insight to emerge from our work is the usefulness of a property called nobossiness, which allows us to nicely decouple the truthfulness + approximation, and budget-feasibility requirements. Some of our constructions can be viewed as reductions showing that an O(1)-approximation budget-feasible mechanism can be obtained provided we have a (randomized) truthful mechanism satisfying nobossiness that returns a (random) feasible set having (expected) value Ω(OPT).
Feedback for Dagstuhl Publishing