Exponential-Time Approximation (Schemes) for Vertex-Ordering Problems

Authors Matthias Bentert, Fedor V. Fomin , Tanmay Inamdar , Saket Saurabh



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2025.15.pdf
  • Filesize: 0.78 MB
  • 18 pages

Document Identifiers

Author Details

Matthias Bentert
  • University of Bergen, Norway
Fedor V. Fomin
  • University of Bergen, Norway
Tanmay Inamdar
  • Indian Institute of Technology Jodhpur, India
Saket Saurabh
  • The Institute of Mathematical Sciences, Chennai, India
  • University of Bergen, Norway

Cite As Get BibTex

Matthias Bentert, Fedor V. Fomin, Tanmay Inamdar, and Saket Saurabh. Exponential-Time Approximation (Schemes) for Vertex-Ordering Problems. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 15:1-15:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.ITCS.2025.15

Abstract

In this paper, we begin the exploration of vertex-ordering problems through the lens of exponential-time approximation algorithms. In particular, we ask the following question: Can we simultaneously beat the running times of the fastest known (exponential-time) exact algorithms and the best known approximation factors that can be achieved in polynomial time? Following the recent research initiated by Esmer et al. (ESA 2022, IPEC 2023, SODA 2024) on vertex-subset problems, and by Inamdar et al. (ITCS 2024) on graph-partitioning problems, we focus on vertex-ordering problems. In particular, we give positive results for Feedback Arc Set, Optimal Linear Arrangement, Cutwidth, and Pathwidth. Most of our algorithms build upon a novel "balanced-cut" approach - which is our main conceptual contribution. This allows us to solve various problems in very general settings allowing for directed and arc-weighted input graphs. Our main technical contribution is a (1+ε)-approximation for any ε > 0 for (weighted) Feedback Arc Set in O^*((2-δ_ε)^n) time, where δ_ε > 0 is a constant only depending on ε.

Subject Classification

ACM Subject Classification
  • Theory of computation → Approximation algorithms analysis
  • Mathematics of computing → Graph algorithms
Keywords
  • Feedback Arc Set
  • Cutwidth
  • Optimal Linear Arrangement
  • Pathwidth

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Josh Alman, Timothy M. Chan, and R. Ryan Williams. Faster deterministic and Las Vegas algorithms for offline approximate nearest neighbors in high dimensions. In Proceedings of the 31st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 637-649. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611975994.39.
  2. Andris Ambainis, Kaspars Balodis, Janis Iraids, Martins Kokainis, Krisjanis Prusis, and Jevgenijs Vihrovs. Quantum speedups for exponential-time dynamic programming algorithms. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1783-1793. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.107.
  3. Per Austrin, Toniann Pitassi, and Yu Wu. Inapproximability of treewidth, one-shot pebbling, and related layout problems. In Proceedings of the 15th International Workshop on Approximation, Randomization, and Combinatorial Optimization (APPROX), pages 13-24. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-32512-0_2.
  4. Nikhil Bansal, Parinya Chalermsook, Bundit Laekhanukit, Danupon Nanongkai, and Jesper Nederlof. New tools and connections for exponential-time approximation. Algorithmica, 81(10):3993-4009, 2019. URL: https://doi.org/10.1007/S00453-018-0512-8.
  5. Nikhil Bansal, Dor Katzelnick, and Roy Schwartz. On approximating cutwidth and pathwidth. In Procceedings of the 65th IEEE Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2024. Accepted for publication. URL: https://doi.org/10.1109/FOCS61266.2024.00051.
  6. Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Koster, Dieter Kratsch, and Dimitrios M. Thilikos. A note on exact algorithms for vertex ordering problems on graphs. Theory of Computing Systems, 50(3):420-432, 2012. URL: https://doi.org/10.1007/S00224-011-9312-0.
  7. Edouard Bonnet, Bruno Escoffier, Vangelis Th. Paschos, and Emeric Tourniaire. Multi-parameter analysis for local graph partitioning problems: Using greediness for parameterization. Algorithmica, 71(3):566-580, 2015. URL: https://doi.org/10.1007/S00453-014-9920-6.
  8. Nicolas Bourgeois, Bruno Escoffier, and Vangelis Th. Paschos. Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms. Discrete Applied Mathematics, 159(17):1954-1970, 2011. URL: https://doi.org/10.1016/J.DAM.2011.07.009.
  9. Parinya Chalermsook, Bundit Laekhanukit, and Danupon Nanongkai. Independent set, induced matching, and pricing: Connections and tight (subexponential time) approximation hardnesses. In Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 370-379. IEEE Computer Society, 2013. URL: https://doi.org/10.1109/FOCS.2013.47.
  10. Moses Charikar, Mohammad Taghi Hajiaghayi, Howard J. Karloff, and Satish Rao. 𝓁₂² spreading metrics for vertex ordering problems. Algorithmica, 56(4):577-604, 2010. Google Scholar
  11. Johanne Cohen, Fedor V. Fomin, Pinar Heggernes, Dieter Kratsch, and Gregory Kucherov. Optimal linear arrangement of interval graphs. In Proceedings of the 31st International Symposium on Mathematical Foundations of Computer Science (MFCS), pages 267-279. Springer, 2006. URL: https://doi.org/10.1007/11821069_24.
  12. Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. On cutwidth parameterized by vertex cover. Algorithmica, 68(4):940-953, 2014. URL: https://doi.org/10.1007/S00453-012-9707-6.
  13. Marek Cygan and Marcin Pilipczuk. Exact and approximate bandwidth. Theoretical Computer Science, 411(40-42):3701-3713, 2010. URL: https://doi.org/10.1016/J.TCS.2010.06.018.
  14. Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex cover. Annals of mathematics, pages 439-485, 2005. Google Scholar
  15. Baris Can Esmer, Ariel Kulik, Dániel Marx, Daniel Neuen, and Roohani Sharma. Faster exponential-time approximation algorithms using approximate monotone local search. In Proceedings of the 30th Annual European Symposium on Algorithms (ESA), pages 50:1-50:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.ESA.2022.50.
  16. Baris Can Esmer, Ariel Kulik, Dániel Marx, Daniel Neuen, and Roohani Sharma. Approximate monotone local search for weighted problems. In Proceedings of the 18th International Symposium on Parameterized and Exact Computation (IPEC), pages 17:1-17:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.IPEC.2023.17.
  17. Baris Can Esmer, Ariel Kulik, Dániel Marx, Daniel Neuen, and Roohani Sharma. Optimally repurposing existing algorithms to obtain exponential-time approximations. In Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 314-345. SIAM, 2024. URL: https://doi.org/10.1137/1.9781611977912.13.
  18. Guy Even, Joseph Naor, Baruch Schieber, and Madhu Sudan. Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica, 20(2):151-174, 1998. URL: https://doi.org/10.1007/PL00009191.
  19. Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved approximation algorithms for minimum weight vertex separators. SIAM Journal on Computing, 38(2):629-657, 2008. URL: https://doi.org/10.1137/05064299X.
  20. Uriel Feige and James R. Lee. An improved approximation ratio for the minimum linear arrangement problem. Information Processing Letters, 101(1):26-29, 2007. URL: https://doi.org/10.1016/J.IPL.2006.07.009.
  21. Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms via monotone local search. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 764-775. ACM, 2016. URL: https://doi.org/10.1145/2897518.2897551.
  22. Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-16533-7.
  23. Michael Held and Richard M. Karp. A dynamic programming approach to sequencing problems. In Proceedings of the 16th ACM national meeting, page 71. ACM, 1961. URL: https://doi.org/10.1145/800029.808532.
  24. Thore Husfeldt, Dieter Kratsch, Ramamohan Paturi, and Gregory B. Sorkin, editors. Exact Complexity of NP-hard Problems, volume 10441 of Dagstuhl Seminar Proceedings. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2010. Google Scholar
  25. Thore Husfeldt, Ramamohan Paturi, Gregory B. Sorkin, and Ryan Williams, editors. Exponential Algorithms: Algorithms and Complexity Beyond Polynomial Time, volume 13331 of Dagstuhl Seminar Proceedings. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2013. Google Scholar
  26. Tanmay Inamdar, Madhumita Kundu, Pekka Parviainen, M. S. Ramanujan, and Saket Saurabh. Exponential-time approximation schemes via compression. In Proceedings of the 15th Conference on Innovations in Theoretical Computer Science (ITCS), pages 64:1-64:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/LIPICS.ITCS.2024.64.
  27. Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM Journal on Computing, 7(4):413-423, 1978. URL: https://doi.org/10.1137/0207033.
  28. Pallavi Jain, Lawqueen Kanesh, William Lochet, Saket Saurabh, and Roohani Sharma. Exact and approximate digraph bandwidth. In Proceedings of the 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pages 18:1-18:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPICS.FSTTCS.2019.18.
  29. Viggo Kann. On the approximability of NP-complete optimization problems. PhD thesis, Royal Institute of Technology Stockholm, 1992. Google Scholar
  30. Kenta Kitsunai, Yasuaki Kobayashi, Keita Komuro, Hisao Tamaki, and Toshihiro Tano. Computing directed pathwidth in O(1.89ⁿ) time. Algorithmica, 75(1):138-157, 2016. Google Scholar
  31. Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. Breaking the all subsets barrier for min k-cut. In Procceedings of the 50th International Colloquium on Automata, Languages, and Programming (ICALP), pages 90:1-90:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.ICALP.2023.90.
  32. Rodica Mihai and Ioan Todinca. Pathwidth is NP-hard for weighted trees. In Proceedings of the 3rd International Workshop on Frontiers in Algorithmics (FAW), pages 181-195. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-02270-8_20.
  33. Jesper Nederlof. Bipartite TSP in o(1.9999ⁿ) time, assuming quadratic time matrix multiplication. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 40-53. ACM, 2020. Google Scholar
  34. Jesper Nederlof, Jakub Pawlewicz, Céline M. F. Swennenhuis, and Karol Wegrzycki. A faster exponential time algorithm for bin packing with a constant number of bins via additive combinatorics. SIAM Journal of Comput., 52(6):1369-1412, 2023. URL: https://doi.org/10.1137/22M1478112.
  35. Herbert Robbins. A remark on Stirling’s formula. The American Mathematical Monthly, 62(1):26-29, 1955. Google Scholar
  36. Ryan Williams. A new algorithm for optimal constraint satisfaction and its implications. In Proceedings of the 31st International Colloquium on Automata, Languages and Programming (ICALP), pages 1227-1237. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-27836-8_101.
  37. Or Zamir. Breaking the 2ⁿ barrier for 5-coloring and 6-coloring. In Procceedings of the 48th International Colloquium on Automata, Languages, and Programming (ICALP), pages 113:1-113:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. Google Scholar
  38. Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication. Journal of the ACM, 49(3):289-317, 2002. URL: https://doi.org/10.1145/567112.567114.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail