LIPIcs.ITCS.2025.46.pdf
- Filesize: 0.74 MB
- 15 pages
In this paper, we consider a new problem of portfolio optimization using stochastic information. In a setting where there is some uncertainty, we ask how to best select k potential solutions, with the goal of optimizing the value of the best solution. More formally, given a combinatorial problem Π, a set of value functions 𝒱 over the solutions of Π, and a distribution 𝒟 over 𝒱, our goal is to select k solutions of Π that maximize or minimize the expected value of the best of those solutions. For a simple example, consider the classic knapsack problem: given a universe of elements each with unit weight and a positive value, the task is to select r elements maximizing the total value. Now suppose that each element’s weight comes from a (known) distribution. How should we select k different solutions so that one of them is likely to yield a high value? In this work, we tackle this basic problem, and generalize it to the setting where the underlying set system forms a matroid. On the technical side, it is clear that the candidate solutions we select must be diverse and anti-correlated; however, it is not clear how to do so efficiently. Our main result is a polynomial-time algorithm that constructs a portfolio within a constant factor of the optimal.
Feedback for Dagstuhl Publishing