Product states, unentangled tensor products of single qubits, are a ubiquitous ansatz in quantum computation, including for state-of-the-art Hamiltonian approximation algorithms. A natural question is whether we should expect to efficiently solve product state problems on any interesting families of Hamiltonians. We completely classify the complexity of finding minimum-energy product states for Hamiltonians defined by any fixed set of allowed 2-qubit interactions. Our results follow a line of work classifying the complexity of solving Hamiltonian problems and classical constraint satisfaction problems based on the allowed constraints. We prove that estimating the minimum energy of a product state is in 𝖯 if and only if all allowed interactions are 1-local, and NP-complete otherwise. Equivalently, any family of non-trivial two-body interactions generates Hamiltonians with NP-complete product-state problems. Our hardness constructions only require coupling strengths of constant magnitude. A crucial component of our proofs is a collection of hardness results for a new variant of the Vector Max-Cut problem, which should be of independent interest. Our definition involves sums of distances rather than squared distances and allows linear stretches. We similarly give a proof that the original Vector Max-Cut problem is NP-complete in 3 dimensions. This implies hardness of optimizing product states for Quantum Max-Cut (the quantum Heisenberg model) is NP-complete, even when every term is guaranteed to have positive unit weight.
@InProceedings{kallaugher_et_al:LIPIcs.ITCS.2025.63, author = {Kallaugher, John and Parekh, Ojas and Thompson, Kevin and Wang, Yipu and Yirka, Justin}, title = {{Complexity Classification of Product State Problems for Local Hamiltonians}}, booktitle = {16th Innovations in Theoretical Computer Science Conference (ITCS 2025)}, pages = {63:1--63:32}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-361-4}, ISSN = {1868-8969}, year = {2025}, volume = {325}, editor = {Meka, Raghu}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.63}, URN = {urn:nbn:de:0030-drops-226910}, doi = {10.4230/LIPIcs.ITCS.2025.63}, annote = {Keywords: quantum complexity, quantum algorithms, local hamiltonians} }
Feedback for Dagstuhl Publishing