Counting Problems for Parikh Images

Authors Christoph Haase, Stefan Kiefer, Markus Lohrey



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2017.12.pdf
  • Filesize: 0.51 MB
  • 13 pages

Document Identifiers

Author Details

Christoph Haase
Stefan Kiefer
Markus Lohrey

Cite AsGet BibTex

Christoph Haase, Stefan Kiefer, and Markus Lohrey. Counting Problems for Parikh Images. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 12:1-12:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.MFCS.2017.12

Abstract

Given finite-state automata (or context-free grammars) A,B over the same alphabet and a Parikh vector p, we study the complexity of deciding whether the number of words in the language of A with Parikh image p is greater than the number of such words in the language of B. Recently, this problem turned out to be tightly related to the cost problem for weighted Markov chains. We classify the complexity according to whether A and B are deterministic, the size of the alphabet, and the encoding of p (binary or unary).
Keywords
  • Parikh images
  • finite automata
  • counting problems

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. E. Allender and K. W. Wagner. Counting hierarchies: Polynomial time and constant depth circuits. Bulletin of the EATCS, 40:182-194, 1990. Google Scholar
  2. A. Bertoni, M. Goldwurm, and N. Sabadini. The complexity of computing the number of strings of given length in context-free languages. Theor. Comput. Sci., 86(2):325-342, 1991. Google Scholar
  3. E. Galby, J. Ouaknine, and J. Worrell. On matrix powering in low dimensions. In Proc. STACS 2015, volume 30 of LIPIcs, pages 329-340, 2015. Google Scholar
  4. F. Green, J. Köbler, K. W. Regan, T. Schwentick, and J.Torán. The power of the middle bit of a #p function. Journal of Computer and System Sciences, 50(3):456-467, 1995. Google Scholar
  5. C. Haase and S. Kiefer. The odds of staying on budget. In Proc. ICALP 2015, Part II, volume 9135 of LNCS, pages 234-246. Springer, 2015. Google Scholar
  6. C. Haase, S. Kiefer, and M. Lohrey. Efficient quantile computation in markov chains via counting problems for parikh images. CoRR, abs/1601.04661, 2016. URL: http://arxiv.org/abs/1601.04661.
  7. C. Haase, S. Kiefer, and M. Lohrey. Computing quantiles in Markov chains with multi-dimensional costs. In Proc. LICS 2017. IEEE, 2017. To appear. Google Scholar
  8. H. B. Hunt III, D. J. Rosenkrantz, and T. G. Szymanski. On the equivalence, containment, and covering problems for the regular and context-free languages. J. Comput. Syst. Sci., 12(2):222-268, 1976. Google Scholar
  9. E. Kopczyński. Complexity of problems of commutative grammars. Log. Meth. Comput. Sci., 11(1), 2015. Google Scholar
  10. D. Kuske and M. Lohrey. First-order and counting theories of omega-automatic structures. J. Symbolic Logic, 73:129-150, 2008. Google Scholar
  11. R. E. Ladner. Polynomial space counting problems. SIAM J. Comput., 18(6):1087-1097, 1989. Google Scholar
  12. M. Mahajan and V. Vinay. A combinatorial algorithm for the determinant. In Proc. SODA 1997, pages 730-738. ACM/SIAM, 1997. Google Scholar
  13. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994. Google Scholar
  14. Z. Sawa. Efficient construction of semilinear representations of languages accepted by unary nondeterministic finite automata. Fundam. Inform., 123(1):97-106, 2013. Google Scholar
  15. L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time (preliminary report). In Proc. STOC 1973, pages 1-9. ACM, 1973. Google Scholar
  16. S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865-877, 1991. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail