Document Open Access Logo

Finding Short Synchronizing Words for Prefix Codes

Authors Andrew Ryzhikov, Marek Szykula



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2018.21.pdf
  • Filesize: 451 kB
  • 14 pages

Document Identifiers

Author Details

Andrew Ryzhikov
  • Université Paris-Est, LIGM, Marne-la-Vallée, France
Marek Szykula
  • Institute of Computer Science, University of Wrocław, Wrocław, Poland

Cite AsGet BibTex

Andrew Ryzhikov and Marek Szykula. Finding Short Synchronizing Words for Prefix Codes. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 21:1-21:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.MFCS.2018.21

Abstract

We study the problems of finding a shortest synchronizing word and its length for a given prefix code. This is done in two different settings: when the code is defined by an arbitrary decoder recognizing its star and when the code is defined by its literal decoder (whose size is polynomially equivalent to the total length of all words in the code). For the first case for every epsilon > 0 we prove n^(1 - epsilon)-inapproximability for recognizable binary maximal prefix codes, Theta(log n)-inapproximability for finite binary maximal prefix codes and n^(1/2 - epsilon)-inapproximability for finite binary prefix codes. By c-inapproximability here we mean the non-existence of a c-approximation polynomial time algorithm under the assumption P != NP, and by n the number of states of the decoder in the input. For the second case, we propose approximation and exact algorithms and conjecture that for finite maximal prefix codes the problem can be solved in polynomial time. We also study the related problems of finding a shortest mortal and a shortest avoiding word.

Subject Classification

ACM Subject Classification
  • Theory of computation → Formal languages and automata theory
Keywords
  • synchronizing word
  • mortal word
  • avoiding word
  • Huffman decoder
  • inapproximability

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Dmitry S. Ananichev, Vladimir V. Gusev, and Mikhail V. Volkov. Slowly synchronizing automata and digraphs. In Mathematical Foundations of Computer Science, LNCS vol. 6281, pages 55-65. Springer, 2010. Google Scholar
  2. Marie-Pierre Béal, Mikhail V. Berlinkov, and Dominique Perrin. A quadratic upper bound on the size of a synchronizing word in one-cluster automata. International Journal of Foundations of Computer Science, 22(2):277-288, 2011. Google Scholar
  3. Mikhail V. Berlinkov. Approximating the minimum length of synchronizing words is hard. Theory of Computing Systems, 54(2):211-223, 2014. Google Scholar
  4. Mikhail V. Berlinkov. On two algorithmic problems about synchronizing automata. In Arseny M. Shur and Mikhail V. Volkov, editors, DLT 2014. LNCS, vol. 8633, pages 61-67. Springer, Cham, 2014. Google Scholar
  5. Mikhail V. Berlinkov and Marek Szykuł a. Algebraic synchronization criterion and computing reset words. Information Sciences, 369:718-730, 2016. Google Scholar
  6. Jean Berstel, Dominique Perrin, and Christophe Reutenauer. Codes and Automata. Encyclopedia of Mathematics and its Applications 129. Cambridge University Press, 2010. Google Scholar
  7. Marek Biskup. Error Resilience in Compressed Data - Selected Topics. PhD thesis, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 2008. Google Scholar
  8. Marek Tomasz Biskup and Wojciech Plandowski. Shortest synchronizing strings for huffman codes. Theoretical Computer Science, 410(38):3925-3941, 2009. Google Scholar
  9. Véronique Bruyère. On maximal codes with bounded synchronization delay. Theoretical Computer Science, 204(1):11-28, 1998. Google Scholar
  10. Renato M. Capocelli, A. A. De Santis, Luisa Gargano, and Ugo Vaccaro. On the construction of statistically synchronizable codes. IEEE Transactions on Information Theory, 38(2):407-414, 1992. Google Scholar
  11. David Eppstein. Reset sequences for monotonic automata. SIAM Journal on Computing, 19(3):500-510, 1990. Google Scholar
  12. Christopher F Freiling, Douglas S Jungreis, François Théberge, and Kenneth Zeger. Almost all complete binary prefix codes have a self-synchronizing string. IEEE Transactions on Information Theory, 49(9):2219-2225, 2003. Google Scholar
  13. Paweł Gawrychowski and Damian Straszak. Strong inapproximability of the shortest reset word. In F. Giuseppe Italiano, Giovanni Pighizzini, and T. Donald Sannella, editors, MFCS 2015. LNCS, vol. 9234, pages 243-255. Springer, Heidelberg, 2015. Google Scholar
  14. Michael Gerbush and Brent Heeringa. Approximating Minimum Reset Sequences, pages 154-162. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. Google Scholar
  15. David A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the IRE, 40(9):1098-1101, 1952. Google Scholar
  16. Pavel Martyugin. Complexity of problems concerning reset words for cyclic and eulerian automata. Theoretical Computer Science, 450(Supplement C):3-9, 2012. Implementation and Application of Automata (CIAA 2011). Google Scholar
  17. Jean-Eric Pin. On two combinatorial problems arising from automata theory. In C. Berge, D. Bresson, P. Camion, J.F. Maurras, and F. Sterboul, editors, Combinatorial Mathematics Proceedings of the International Colloquium on Graph Theory and Combinatorics, volume 75 of North-Holland Mathematics Studies, pages 535-548. North-Holland, 1983. Google Scholar
  18. Antonio Restivo. Some remarks on complete subsets of a free monoid. Quaderni de ”La ricerca scientifica”, CNR Roma, 109:19-25, 1981. Google Scholar
  19. Andrew Ryzhikov. Synchronization problems in automata without non-trivial cycles. In Arnaud Carayol and Cyril Nicaud, editors, CIAA 2017, LNCS, vol. 10329, pages 188-200. Springer, Cham, 2017. Google Scholar
  20. Andrew Ryzhikov and Anton Shemyakov. Subset synchronization in monotonic automata. In Juhani Karhumäki and Aleksi Saarela, editors, Proceedings of the Fourth Russian Finnish Symposium on Discrete Mathematics, TUCS Lecture Notes 26, pages 154-164, 2017. Accepted to Fundamenta Informaticae. Google Scholar
  21. Marcel-Paul Schützenberger. On the synchronizing properties of certain prefix codes. Information and Control, 7(1):23-36, 1964. Google Scholar
  22. Marcel-Paul Schützenberger. On synchronizing prefix codes. Information and Control, 11(4):396-401, 1967. Google Scholar
  23. Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 3rd edition, 2012. Google Scholar
  24. Marek Szykuła. Improving the Upper Bound on the Length of the Shortest Reset Word. In STACS 2018, LIPIcs, pages 56:1-56:13. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. Google Scholar
  25. Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag New York, 2001. Google Scholar
  26. Mikhail V. Volkov. Synchronizing automata and the Černý conjecture. In Carlos Martín-Vide, Friedrich Otto, and Henning Fernau, editors, LATA 2008. LNCS, vol. 5196, pages 11-27. Springer, Heidelberg, 2008. Google Scholar
  27. Vojtěch Vorel. Complexity of a problem concerning reset words for eulerian binary automata. Information and Computation, 253(Part 3):497-509, 2017. LATA 2014. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail