In this paper we investigate the (effective) dimension spectra of lines in the Euclidean plane. The dimension spectrum of a line L_{a,b}, sp(L), with slope a and intercept b is the set of all effective dimensions of the points (x, ax + b) on L. It has been recently shown that, for every a and b with effective dimension less than 1, the dimension spectrum of L_{a,b} contains an interval. Our first main theorem shows that this holds for every line. Moreover, when the effective dimension of a and b is at least 1, sp(L) contains a unit interval. Our second main theorem gives lower bounds on the dimension spectra of lines. In particular, we show that for every alpha in [0,1], with the exception of a set of Hausdorff dimension at most alpha, the effective dimension of (x, ax + b) is at least alpha + dim(a,b)/2. As a consequence of this theorem, using a recent characterization of Hausdorff dimension using effective dimension, we give a new proof of a result by Molter and Rela on the Hausdorff dimension of Furstenberg sets.
@InProceedings{stull:LIPIcs.MFCS.2018.79, author = {Stull, Donald M.}, title = {{Results on the Dimension Spectra of Planar Lines}}, booktitle = {43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)}, pages = {79:1--79:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-086-6}, ISSN = {1868-8969}, year = {2018}, volume = {117}, editor = {Potapov, Igor and Spirakis, Paul and Worrell, James}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.79}, URN = {urn:nbn:de:0030-drops-96611}, doi = {10.4230/LIPIcs.MFCS.2018.79}, annote = {Keywords: algorithmic randomness, geometric measure theory, Hausdorff dimension, Kolmogorov complexity} }
Feedback for Dagstuhl Publishing