For a connected graph G = (V, E) and s, t ∈ V, a non-separating s-t path is a path P between s and t such that the set of vertices of P does not separate G, that is, G - V(P) is connected. An s-t path P is non-disconnecting if G - E(P) is connected. The problems of finding shortest non-separating and non-disconnecting paths are both known to be NP-hard. In this paper, we consider the problems from the viewpoint of parameterized complexity. We show that the problem of finding a non-separating s-t path of length at most k is W[1]-hard parameterized by k, while the non-disconnecting counterpart is fixed-parameter tractable (FPT) parameterized by k. We also consider the shortest non-separating path problem on several classes of graphs and show that this problem is NP-hard even on bipartite graphs, split graphs, and planar graphs. As for positive results, the shortest non-separating path problem is FPT parameterized by k on planar graphs and on unit disk graphs (where no s, t is given). Further, we give a polynomial-time algorithm on chordal graphs if k is the distance of the shortest path between s and t.
@InProceedings{abhinav_et_al:LIPIcs.MFCS.2022.6, author = {Abhinav, Ankit and Bandopadhyay, Susobhan and Banik, Aritra and Kobayashi, Yasuaki and Nagano, Shunsuke and Otachi, Yota and Saurabh, Saket}, title = {{Parameterized Complexity of Non-Separating and Non-Disconnecting Paths and Sets}}, booktitle = {47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)}, pages = {6:1--6:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-256-3}, ISSN = {1868-8969}, year = {2022}, volume = {241}, editor = {Szeider, Stefan and Ganian, Robert and Silva, Alexandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.6}, URN = {urn:nbn:de:0030-drops-168041}, doi = {10.4230/LIPIcs.MFCS.2022.6}, annote = {Keywords: Non-separating path, Parameterized complexity} }
Feedback for Dagstuhl Publishing