Graph Search Trees and the Intermezzo Problem

Authors Jesse Beisegel , Ekkehard Köhler, Fabienne Ratajczak , Robert Scheffler , Martin Strehler



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2024.22.pdf
  • Filesize: 0.76 MB
  • 18 pages

Document Identifiers

Author Details

Jesse Beisegel
  • Institute of Mathematics, Brandenburg University of Technology, Cottbus, Germany
Ekkehard Köhler
  • Institute of Mathematics, Brandenburg University of Technology, Cottbus, Germany
Fabienne Ratajczak
  • Institute of Mathematics, Brandenburg University of Technology, Cottbus, Germany
Robert Scheffler
  • Institute of Mathematics, Brandenburg University of Technology, Cottbus, Germany
Martin Strehler
  • Department of Mathematics, Westsächsische Hochschule Zwickau, Germany

Acknowledgements

The authors would like to thank Matjaž Krnc, Martin Milanič, and Nevena Pivač for fruitful discussions about first-in and last-in trees as well as about Paul and Mary.

Cite AsGet BibTex

Jesse Beisegel, Ekkehard Köhler, Fabienne Ratajczak, Robert Scheffler, and Martin Strehler. Graph Search Trees and the Intermezzo Problem. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.MFCS.2024.22

Abstract

The last in-tree recognition problem asks whether a given spanning tree can be derived by connecting each vertex with its rightmost left neighbor of some search ordering. In this study, we demonstrate that the last-in-tree recognition problem for Generic Search is NP-complete. We utilize this finding to strengthen a complexity result from order theory. Given a partial order π and a set of triples, the NP-complete intermezzo problem asks for a linear extension of π where each first element of a triple is not between the other two. We show that this problem remains NP-complete even when the Hasse diagram of the partial order forms a tree of bounded height. In contrast, we give an XP-algorithm for the problem when parameterized by the width of the partial order. Furthermore, we show that - under the assumption of the Exponential Time Hypothesis - the running time of this algorithm is asymptotically optimal.

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
  • Theory of computation → Problems, reductions and completeness
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • graph search trees
  • intermezzo problem
  • algorithm
  • parameterized complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Jesse Beisegel, Carolin Denkert, Ekkehard Köhler, Matjaž Krnc, Nevena Pivač, Robert Scheffler, and Martin Strehler. On the end-vertex problem of graph searches. Discrete Mathematics & Theoretical Computer Science, 21(1), 2019. URL: https://doi.org/10.23638/DMTCS-21-1-13.
  2. Jesse Beisegel, Carolin Denkert, Ekkehard Köhler, Matjaž Krnc, Nevena Pivač, Robert Scheffler, and Martin Strehler. The recognition problem of graph search trees. SIAM Journal on Discrete Mathematics, 35(2):1418-1446, 2021. URL: https://doi.org/10.1137/20M1313301.
  3. Jesse Beisegel, Ekkehard Köhler, Fabienne Ratajczak, Robert Scheffler, and Martin Strehler. Graph search trees and the intermezzo problem, 2024. URL: https://arxiv.org/abs/2404.18645.
  4. Jesse Beisegel, Fabienne Ratajczak, and Robert Scheffler. Computing Hamiltonian paths with partial order restrictions, 2024. URL: https://arxiv.org/abs/2404.16662.
  5. Pierre Charbit, Michel Habib, and Antoine Mamcarz. Influence of the tie-break rule on the end-vertex problem. Discrete Mathematics & Theoretical Computer Science, 16(2):57-72, 2014. URL: https://doi.org/10.46298/dmtcs.2081.
  6. Charles J. Colbourn and William R. Pulleyblank. Minimizing setups in ordered sets of fixed width. Order, 1:225-229, 1985. URL: https://doi.org/10.1007/BF00383598.
  7. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, chapter 22.4: Topological sort, pages 549-552. MIT Press, 2nd edition, 2001. Google Scholar
  8. Derek G. Corneil and Richard M. Krueger. A unified view of graph searching. SIAM Journal on Discrete Mathematics, 22(4):1259-1276, 2008. URL: https://doi.org/10.1137/050623498.
  9. Derek G. Corneil, Ekkehard Köhler, and Jean-Marc Lanlignel. On end-vertices of Lexicographic Breadth First Searches. Discrete Applied Mathematics, 158(5):434-443, 2010. URL: https://doi.org/10.1016/j.dam.2009.10.001.
  10. Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, Cham, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  11. Robert P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics, 51(1):161-166, 1950. URL: https://doi.org/10.2307/1969503.
  12. Michael R. Fellows, Danny Hermelin, Frances Rosamond, and Stéphane Vialette. On the parameterized complexity of multiple-interval graph problems. Theoretical Computer Science, 410(1):53-61, 2009. URL: https://doi.org/10.1016/j.tcs.2008.09.065.
  13. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. Google Scholar
  14. Walter Guttmann and Markus Maucher. Variations on an ordering theme with constraints. In Gonzalo Navarro, Leopoldo Bertossi, and Yoshiharu Kohayakawa, editors, Fourth IFIP International Conference on Theoretical Computer Science- TCS 2006, volume 209 of IFIPAICT, pages 77-90, Boston, MA, 2006. Springer. URL: https://doi.org/10.1007/978-0-387-34735-6_10.
  15. Torben Hagerup. Biconnected graph assembly and recognition of DFS trees. Technical Report A 85/03, Universität des Saarlandes, 1985. URL: https://doi.org/10.22028/D291-26437.
  16. Torben Hagerup and Manfred Nowak. Recognition of spanning trees defined by graph searches. Technical Report A 85/08, Universität des Saarlandes, 1985. Google Scholar
  17. John Hopcroft and Robert Tarjan. Efficient planarity testing. Journal of the ACM, 21(4):549-568, 1974. URL: https://doi.org/10.1145/321850.321852.
  18. Ephraim Korach and Zvi Ostfeld. DFS tree construction: Algorithms and characterizations. In Jan van Leeuwen, editor, Graph-Theoretic Concepts in Computer Science - WG '88, volume 344 of LNCS, pages 87-106, Berlin, Heidelberg, 1989. Springer. URL: https://doi.org/10.1007/3-540-50728-0_37.
  19. Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the exponential time hypothesis. Bulletin of EATCS, 105:41-71, 2011. URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/92.
  20. Udi Manber. Recognizing breadth-first search trees in linear time. Information Processing Letters, 34(4):167-171, 1990. URL: https://doi.org/10.1016/0020-0190(90)90155-Q.
  21. Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. Journal of Computer and System Sciences, 67(4):757-771, 2003. URL: https://doi.org/10.1016/S0022-0000(03)00078-3.
  22. Donald J. Rose, R. Endre Tarjan, and George S. Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM Journal on Computing, 5(2):266-283, 1976. URL: https://doi.org/10.1137/0205021.
  23. Robert Scheffler. Linearizing partial search orders. In Michael A. Bekos and Michael Kaufmann, editors, Graph-Theoretic Concepts in Computer Science - WG 2022, volume 13453 of LNCS, pages 425-438, Cham, 2022. Springer. URL: https://doi.org/10.1007/978-3-031-15914-5_31.
  24. Robert Scheffler. On the recognition of search trees generated by BFS and DFS. Theoretical Computer Science, 936:116-128, 2022. URL: https://doi.org/10.1016/j.tcs.2022.09.018.
  25. Robert Scheffler. Graph search trees and their leaves. In Daniël Paulusma and Bernard Ries, editors, Graph-Theoretic Concepts in Computer Science - WG 2023, volume 14093 of LNCS, pages 462-476, Cham, 2023. Springer. URL: https://doi.org/10.1007/978-3-031-43380-1_33.
  26. Robert Scheffler. Ready to Order? On Vertex and Edge Orderings of Graphs. Doctoral thesis, BTU Cottbus-Senftenberg, 2023. URL: https://doi.org/10.26127/BTUOpen-6301.
  27. Robert Scheffler. Recognizing LBFS trees of bipartite graphs. Information Processing Letters, 186:106483, 2024. URL: https://doi.org/10.1016/j.ipl.2024.106483.
  28. Edward Szpilrajn. Sur l'extension de l'ordre partiel. Fundamenta Mathematicae, 16:386-389, 1930. In French. URL: https://doi.org/10.4064/fm-16-1-386-389.
  29. William T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory. Johns Hopkins Series in the Mathematical Sciences. The Johns Hopkins University Press, Baltimore, London, 1992. Google Scholar
  30. Elliot S. Wolk. A note on "The comparability graph of a tree". Proceedings of the American Mathematical Society, 16(1):17-20, 1965. URL: https://doi.org/10.1090/S0002-9939-1965-0172274-5.
  31. Meibiao Zou, Zhifeng Wang, Jianxin Wang, and Yixin Cao. End vertices of graph searches on bipartite graphs. Information Processing Letters, 173:106176, 2022. URL: https://doi.org/10.1016/j.ipl.2021.106176.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail