Generalized Completion Problems with Forbidden Tournaments

Authors Zeno Bitter , Antoine Mottet



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2024.28.pdf
  • Filesize: 0.72 MB
  • 17 pages

Document Identifiers

Author Details

Zeno Bitter
  • Hamburg University of Technology, Research Group for Theoretical Computer Science, Germany
Antoine Mottet
  • Hamburg University of Technology, Research Group for Theoretical Computer Science, Germany

Cite AsGet BibTex

Zeno Bitter and Antoine Mottet. Generalized Completion Problems with Forbidden Tournaments. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 28:1-28:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.MFCS.2024.28

Abstract

A recent result by Bodirsky and Guzmán-Pro gives a complexity dichotomy for the following class of computational problems, parametrized by a finite family F of finite tournaments: given an undirected graph, does there exist an orientation of the graph that avoids every tournament in F? One can see the edges of the input graphs as constraints imposing to find an orientation. In this paper, we consider a more general version of this problem where the constraints in the input are not necessarily about pairs of variables and impose local constraints on the global oriented graph to be found. Our main result is a complexity dichotomy for such problems, as well as a classification of such problems where the yes-instances have bounded treewidth duality. As a consequence, we obtain a streamlined proof of the result by Bodirsky and Guzmán-Pro using the theory of smooth approximations due to Mottet and Pinsker.

Subject Classification

ACM Subject Classification
  • Theory of computation → Constraint and logic programming
  • Theory of computation → Complexity theory and logic
Keywords
  • Tournaments
  • completion problems
  • constraint satisfaction problems
  • homogeneous structures
  • polymorphisms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Lovkush Agarwal and Michael Kompatscher. 2^ℵ₀ pairwise nonisomorphic maximal-closed subgroups of Sym(ℕ) via the classification of the reducts of the henson digraphs. J. Symb. Log., 83(2):395-415, 2018. URL: https://doi.org/10.1017/JSL.2017.74.
  2. Libor Barto, Michael Kompatscher, Miroslav Olšák, Van Trung Pham, and Michael Pinsker. Equations in oligomorphic clones and the constraint satisfaction problem for ω-categorical structures. J. Math. Log., 19(2):1950010:1-1950010:31, 2019. URL: https://doi.org/10.1142/S0219061319500107.
  3. Manuel Bodirsky. Cores of countably categorical structures. Log. Methods Comput. Sci., 3(1), 2007. URL: https://doi.org/10.2168/LMCS-3(1:2)2007.
  4. Manuel Bodirsky and Martin Grohe. Non-dichotomies in constraint satisfaction complexity. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming & Track C: Security and Cryptography Foundations, volume 5126 of Lecture Notes in Computer Science, pages 184-196. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-70583-3_16.
  5. Manuel Bodirsky and Santiago Guzmán-Pro. Forbidden tournaments and the orientation completion problem. CoRR, abs/2309.08327, 2023. URL: https://doi.org/10.48550/arXiv.2309.08327.
  6. Manuel Bodirsky and Jan Kára. The complexity of equality constraint languages. In Dima Grigoriev, John Harrison, and Edward A. Hirsch, editors, Computer Science - Theory and Applications, First International Symposium on Computer Science in Russia, CSR 2006, St. Petersburg, Russia, June 8-12, 2006, Proceedings, volume 3967 of Lecture Notes in Computer Science, pages 114-126. Springer, 2006. URL: https://doi.org/10.1007/11753728_14.
  7. Manuel Bodirsky and Jan Kára. The complexity of temporal constraint satisfaction problems. J. ACM, 57(2):9:1-9:41, 2010. URL: https://doi.org/10.1145/1667053.1667058.
  8. Manuel Bodirsky, Barnaby Martin, Michael Pinsker, and András Pongrácz. Constraint satisfaction problems for reducts of homogeneous graphs. SIAM J. Comput., 48(4):1224-1264, 2019. URL: https://doi.org/10.1137/16M1082974.
  9. Manuel Bodirsky and Antoine Mottet. Reducts of finitely bounded homogeneous structures, and lifting tractability from finite-domain constraint satisfaction. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '16, New York, NY, USA, July 5-8, 2016, pages 623-632. ACM, 2016. URL: https://doi.org/10.1145/2933575.2934515.
  10. Manuel Bodirsky and Antoine Mottet. A dichotomy for first-order reducts of unary structures. Log. Methods Comput. Sci., 14(2), 2018. URL: https://doi.org/10.23638/LMCS-14(2:13)2018.
  11. Manuel Bodirsky and Michael Pinsker. Topological Birkhoff. Transactions of the American Mathematical Society, 367(4):2527-2549, 2015. URL: http://www.jstor.org/stable/24513079.
  12. Manuel Bodirsky and Michael Pinsker. Canonical functions: a new proofs via topological dynamics. Contributions to Discrete Mathematics, 16, 2021. URL: https://doi.org/10.11575/cdm.v16i2.71724.
  13. Manuel Bodirsky, Michael Pinsker, and Todor Tsankov. Decidability of definability. J. Symb. Log., 78(4):1036-1054, 2013. URL: https://doi.org/10.2178/JSL.7804020.
  14. Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 319-330. IEEE Computer Society, 2017. URL: https://doi.org/10.1109/FOCS.2017.37.
  15. Andrei A. Bulatov, Andrei A. Krokhin, and Benoît Larose. Dualities for constraint satisfaction problems. In Nadia Creignou, Phokion G. Kolaitis, and Heribert Vollmer, editors, Complexity of Constraints - An Overview of Current Research Themes [Result of a Dagstuhl Seminar], volume 5250 of Lecture Notes in Computer Science, pages 93-124. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-92800-3_5.
  16. Roland Fraïssé. Une hypothèse sur l'extension des relations finies et sa vérification dans certaines classes particulières (deuxième partie). Synthese, 16(1):34-46, 1966. URL: http://www.jstor.org/stable/20114493.
  17. Pierre Gillibert, Julius Jonušas, Michael Kompatscher, Antoine Mottet, and Michael Pinsker. Hrushovski’s encoding and ω-categorical CSP monsters. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 131:1-131:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPICS.ICALP.2020.131.
  18. Pierre Gillibert, Julius Jonušas, Michael Kompatscher, Antoine Mottet, and Michael Pinsker. When symmetries are not enough: A hierarchy of hard constraint satisfaction problems. SIAM J. Comput., 51(2):175-213, 2022. URL: https://doi.org/10.1137/20M1383471.
  19. Wilfrid Hodges. Model theory. Cambridge University Press, 1993. Google Scholar
  20. Michael Kompatscher and Trung Van Pham. A complexity dichotomy for poset constraint satisfaction. FLAP, 5(8):1663-1696, 2018. URL: https://www.collegepublications.co.uk/downloads/ifcolog00028.pdf.
  21. Benoît Larose and László Zádori. Taylor terms, constraint satisfaction and the complexity of polynomial equations over finite algebras. Int. J. Algebra Comput., 16(3):563-582, 2006. URL: https://doi.org/10.1142/S0218196706003116.
  22. Antoine Mottet, Tomáš Nagy, Michael Pinsker, and Michal Wrona. Smooth approximations and relational width collapses. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 138:1-138:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.ICALP.2021.138.
  23. Antoine Mottet, Tomáš Nagy, Michael Pinsker, and Michal Wrona. When symmetries are enough: collapsing the bounded width hierarchy for infinite-domain CSPs. SIAM Journal on Computing, 2024. To appear. Google Scholar
  24. Antoine Mottet and Michael Pinsker. Cores over Ramsey structures. J. Symb. Log., 86(1):352-361, 2021. URL: https://doi.org/10.1017/JSL.2021.6.
  25. Antoine Mottet and Michael Pinsker. Smooth approximations and CSPs over finitely bounded homogeneous structures. In Christel Baier and Dana Fisman, editors, LICS '22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022, pages 36:1-36:13. ACM, 2022. URL: https://doi.org/10.1145/3531130.3533353.
  26. Antoine Mottet, Michael Pinsker, and Tomáš Nagy. An order out of nowhere: a new algorithm for infinite-domain CSPs. In Proceedings of ICALP, 2024. To appear. Google Scholar
  27. Jaroslav Nešetřil and Vojtěch Rödl. The partite construction and ramsey set systems. Discrete Mathematics, 75(1):327-334, 1989. URL: https://doi.org/10.1016/0012-365X(89)90097-6.
  28. E. L. Post. The two-valued iterative systems of mathematical logic. Annals of Mathematics Studies, 1941. Google Scholar
  29. Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1-30:78, 2020. URL: https://doi.org/10.1145/3402029.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail