,
Dušan Knop
,
Jan Pokorný
,
Šimon Schierreich
Creative Commons Attribution 4.0 International license
In the Equitable Connected Partition (ECP for short) problem, we are given a graph G = (V,E) together with an integer p ∈ ℕ, and our goal is to find a partition of V into p parts such that each part induces a connected sub-graph of G and the size of each two parts differs by at most 1. On the one hand, the problem is known to be NP-hard in general and W[1]-hard with respect to the path-width, the feedback-vertex set, and the number of parts p combined. On the other hand, fixed-parameter algorithms are known for parameters the vertex-integrity and the max leaf number. In this work, we systematically study ECP with respect to various structural restrictions of the underlying graph and provide a clear dichotomy of its parameterised complexity. Specifically, we show that the problem is in FPT when parameterized by the modular-width and the distance to clique. Next, we prove W[1]-hardness with respect to the distance to cluster, the 4-path vertex cover number, the distance to disjoint paths, and the feedback-edge set, and NP-hardness for constant shrub-depth graphs. Our hardness results are complemented by matching algorithmic upper-bounds: we give an XP algorithm for parameterisation by the tree-width and the distance to cluster. We also give an improved FPT algorithm for parameterisation by the vertex integrity and the first explicit FPT algorithm for the 3-path vertex cover number. The main ingredient of these algorithms is a formulation of ECP as N-fold IP, which clearly indicates that such formulations may, in certain scenarios, significantly outperform existing algorithms based on the famous algorithm of Lenstra.
@InProceedings{blazej_et_al:LIPIcs.MFCS.2024.29,
author = {Bla\v{z}ej, V\'{a}clav and Knop, Du\v{s}an and Pokorn\'{y}, Jan and Schierreich, \v{S}imon},
title = {{Equitable Connected Partition and Structural Parameters Revisited: N-Fold Beats Lenstra}},
booktitle = {49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
pages = {29:1--29:16},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-335-5},
ISSN = {1868-8969},
year = {2024},
volume = {306},
editor = {Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.29},
URN = {urn:nbn:de:0030-drops-205857},
doi = {10.4230/LIPIcs.MFCS.2024.29},
annote = {Keywords: Equitable Connected Partition, structural parameters, fixed-parameter tractability, N-fold integer programming, tree-width, shrub-depth, modular-width}
}