Document

# Unveiling the Connection Between the Lyndon Factorization and the Canonical Inverse Lyndon Factorization via a Border Property

## File

LIPIcs.MFCS.2024.31.pdf
• Filesize: 0.75 MB
• 14 pages

## Cite As

Paola Bonizzoni, Clelia De Felice, Brian Riccardi, Rocco Zaccagnino, and Rosalba Zizza. Unveiling the Connection Between the Lyndon Factorization and the Canonical Inverse Lyndon Factorization via a Border Property. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 31:1-31:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.MFCS.2024.31

## Abstract

The notion of Lyndon word and Lyndon factorization has shown to have unexpected applications in theory as well as in developing novel algorithms on words. A counterpart to these notions are those of inverse Lyndon word and inverse Lyndon factorization. Differently from the Lyndon words, the inverse Lyndon words may be bordered. The relationship between the two factorizations is related to the inverse lexicographic ordering, and has only been recently explored. More precisely, a main open question is how to get an inverse Lyndon factorization from a classical Lyndon factorization under the inverse lexicographic ordering, named CFL_in. In this paper we reveal a strong connection between these two factorizations where the border plays a relevant role. More precisely, we show two main results. We say that a factorization has the border property if a nonempty border of a factor cannot be a prefix of the next factor. First we show that there exists a unique inverse Lyndon factorization having the border property. Then we show that this unique factorization with the border property is the so-called canonical inverse Lyndon factorization, named ICFL. By showing that ICFL is obtained by compacting factors of the Lyndon factorization over the inverse lexicographic ordering, we provide a linear time algorithm for computing ICFL from CFL_in.

## Subject Classification

##### ACM Subject Classification
• Mathematics of computing → Combinatorics on words
• Mathematics of computing → Combinatorial algorithms
##### Keywords
• Lyndon words
• Lyndon factorization
• Combinatorial algorithms on words

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Alberto Apostolico and Maxime Crochemore. Fast parallel Lyndon factorization with applications. Mathematical systems theory, 28(2):89-108, 1995.
2. Hideo Bannai, Juha Kärkkäinen, Dominik Köppl, and Marcin Piatkowski. Constructing and indexing the bijective and extended Burrows-Wheeler transform. Information and Computation, 297:105153, 2024. URL: https://doi.org/10.1016/j.ic.2024.105153.
3. Hideo Bannai, I Tomohiro, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and Kazuya Tsuruta. A new characterization of maximal repetitions by Lyndon trees. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 562-571, 2015.
4. Jean Berstel, Dominique Perrin, and Christophe Reutenauer. Codes and Automata. Encyclopedia of Mathematics and its Applications 129, Cambridge University Press, 2009.
5. Nico Bertram, Jonas Ellert, and Johannes Fischer. Lyndon words accelerate suffix sorting. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, 29th Annual European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs, pages 15:1-15:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
6. Elena Biagi, Davide Cenzato, Zsuzsanna Lipták, and Giuseppe Romana. On the number of equal-letter runs of the Bijective Burrows-Wheeler Transform. In CEUR Workshop Proceedings, volume 3587, pages 129-142. R. Piskac c/o Redaktion Sun SITE, Informatik V, RWTH Aachen, 2023.
7. Paola Bonizzoni, Matteo Costantini, Clelia De Felice, Alessia Petescia, Yuri Pirola, Marco Previtali, Raffaella Rizzi, Jens Stoye, Rocco Zaccagnino, and Rosalba Zizza. Numeric Lyndon-based feature embedding of sequencing reads for machine learning approaches. Inf. Sci., 607:458-476, 2022.
8. Paola Bonizzoni, Clelia De Felice, Rocco Zaccagnino, and Rosalba Zizza. Inverse Lyndon words and inverse Lyndon factorizations of words. Adv. Appl. Math., 101:281-319, 2018.
9. Paola Bonizzoni, Clelia De Felice, Rocco Zaccagnino, and Rosalba Zizza. Lyndon words versus inverse Lyndon words: Queries on suffixes and bordered words. In Alberto Leporati, Carlos Martín-Vide, Dana Shapira, and Claudio Zandron, editors, Language and Automata Theory and Applications - 14th International Conference, LATA 2020, Milan, Italy, March 4-6, 2020, Proceedings, volume 12038 of Lecture Notes in Computer Science, pages 385-396. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-40608-0_27.
10. Paola Bonizzoni, Clelia De Felice, Rocco Zaccagnino, and Rosalba Zizza. On the longest common prefix of suffixes in an inverse Lyndon factorization and other properties. Theor. Comput. Sci., 862:24-41, 2021.
11. Paola Bonizzoni, Clelia De Felice, Rocco Zaccagnino, and Rosalba Zizza. From the Lyndon factorization to the Canonical Inverse Lyndon factorization: back and forth. under submission, ArXiv, 2024.
12. Kuo-Tsai Chen, Ralph H. Fox, and Roger C. Lyndon. Free Differential calculus, IV. The Quotient Groups of the Lower Central Series. Ann. Math., 68:81-95, 1958.
13. Christian Choffrut and Juhani Karhumäki. Combinatorics of Words. In Grzegorz Rozenberg and Arto Salomaa, editors, Handbook of Formal Languages, Vol. 1, pages 329-438. Springer-Verlag, Berlin, Heidelberg, 1997.
14. Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings. Cambridge University Press, 2007.
15. Olivier Delgrange and Eric Rivals. Star: an algorithm to search for tandem approximate repeats. Bioinformatics, 20(16):2812-2820, 2004.
16. Jean-Pierre Duval. Factorizing Words over an Ordered Alphabet. J. Algorithms, 4(4):363-381, 1983.
17. Harold Fredricksen and James Maiorana. Necklaces of beads in k colors and k-ary de Brujin sequences. Discrete Math., 23(3):207-210, 1978.
18. Daniele A. Gewurz and Francesca Merola. Numeration and enumeration. Eur. J. Comb., 33(7):1547-1556, 2012.
19. Sukhpal Singh Ghuman, Emanuele Giaquinta, and Jorma Tarhio. Alternative Algorithms for Lyndon Factorization. In Proceedings of the Prague Stringology Conference 2014, Prague, Czech Republic, September 1-3, 2014, pages 169-178, 2014.
20. Tomohiro I, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Faster Lyndon factorization algorithms for SLP and LZ78 compressed text. Theoretical Computer Science, 656:215-224, 2016.
21. Dominik Köppl, Daiki Hashimoto, Diptarama Hendrian, and Ayumi Shinohara. In-place bijective Burrows-Wheeler Transforms. In Inge Li Gørtz and Oren Weimann, editors, 31st Annual Symposium on Combinatorial Pattern Matching, CPM 2020, June 17-19, 2020, Copenhagen, Denmark, volume 161 of LIPIcs, pages 21:1-21:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPICS.CPM.2020.21.
22. M. Lothaire. Algebraic Combinatorics on Words, Encyclopedia Math. Appl, volume 90. Cambridge University Press, 1997.
23. M. Lothaire. Applied Combinatorics on Words. Cambridge University Press, 2005.
24. Roger Lyndon. On Burnside’s problem. Trans. Amer. Math. Soc., 77:202-215, 1954.
25. Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. Suffix array and Lyndon factorization of a text. J. Discrete Algorithms, 28:2-8, 2014.
26. Igor Martayan, Bastien Cazaux, Antoine Limasset, and Camille Marchet. Conway-Bromage-Lyndon (CBL): an exact, dynamic representation of k-mer sets. bioRxiv, 2024. URL: https://doi.org/10.1101/2024.01.29.577700.
27. Christophe Reutenauer. Free Lie algebras. In Handbook of Algebra, London Mathematical Society Monographs. Oxford Science Publications, 1993.
X

Feedback for Dagstuhl Publishing