Covering and Partitioning of Split, Chain and Cographs with Isometric Paths

Authors Dibyayan Chakraborty , Haiko Müller , Sebastian Ordyniak , Fahad Panolan , Mateusz Rychlicki



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2024.39.pdf
  • Filesize: 0.75 MB
  • 14 pages

Document Identifiers

Author Details

Dibyayan Chakraborty
  • School of Computing, University of Leeds, UK
Haiko Müller
  • School of Computing, University of Leeds, UK
Sebastian Ordyniak
  • School of Computing, University of Leeds, UK
Fahad Panolan
  • School of Computing, University of Leeds, UK
Mateusz Rychlicki
  • School of Computing, University of Leeds, UK

Cite AsGet BibTex

Dibyayan Chakraborty, Haiko Müller, Sebastian Ordyniak, Fahad Panolan, and Mateusz Rychlicki. Covering and Partitioning of Split, Chain and Cographs with Isometric Paths. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 39:1-39:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.MFCS.2024.39

Abstract

Given a graph G, an isometric path cover of a graph is a set of isometric paths that collectively contain all vertices of G. An isometric path cover 𝒞 of a graph G is also an isometric path partition if no vertex lies in two paths in 𝒞. Given a graph G, and an integer k, the objective of Isometric Path Cover (resp. Isometric Path Partition) is to decide whether G has an isometric path cover (resp. partition) of cardinality k. In this paper, we show that Isometric Path Partition is NP-complete even on split graphs, i.e. graphs whose vertex set can be partitioned into a clique and an independent set. In contrast, we show that both Isometric Path Cover and Isometric Path Partition admit polynomial time algorithms on cographs (graphs with no induced P₄) and chain graphs (bipartite graphs with no induced 2K₂).

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
Keywords
  • Isometric path partition (cover)
  • chordal graphs
  • chain graphs
  • split graphs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. I. Abraham, C. Gavoille, A. Gupta, O. Neiman, and K. Talwar. Cops, robbers, and threatening skeletons: Padded decomposition for minor-free graphs. In Proceedings of the forty-sixth annual ACM symposium on Theory of computing, pages 79-88, 2014. Google Scholar
  2. K. Asdre and S. D. Nikolopoulos. A linear-time algorithm for the k-fixed-endpoint path cover problem on cographs. Networks: An International Journal, 50(4):231-240, 2007. Google Scholar
  3. H. L. Bodlaender and R. H. Möhring. The pathwidth and treewidth of cographs. SIAM Journal on Discrete Mathematics, 6(2):181-188, 1993. Google Scholar
  4. D. Chakraborty, J. Chalopin, F. Foucaud, and Y. Vaxès. Isometric path complexity of graphs. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. Google Scholar
  5. D. Chakraborty, A. Dailly, S. Das, F. Foucaud, H. Gahlawat, and S. K. Ghosh. Complexity and algorithms for ISOMETRIC PATH COVER on chordal graphs and beyond. In ISAAC 2022, volume 248 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1-12:17, 2022. Google Scholar
  6. D. G. Corneil, H. Lerchs, and L. Stewart Burlingham. Complement reducible graphs. Discrete Applied Mathematics, 3(3):163-174, 1981. Google Scholar
  7. M. Dumas, F. Foucaud, A. Perez, and I. Todinca. On graphs coverable by k shortest paths. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. Google Scholar
  8. H. Fernau, F. Foucaud, K. Mann, U. Padariya, and R. Rao K. N. Parameterizing path partitions. In Marios Mavronicolas, editor, Algorithms and Complexity - 13th International Conference, CIAC 2023, Larnaca, Cyprus, June 13-16, 2023, Proceedings, volume 13898 of Lecture Notes in Computer Science, pages 187-201. Springer, 2023. Google Scholar
  9. Y. Gao, D. R. Hare, and J. Nastos. The cluster deletion problem for cographs. Discrete Mathematics, 313(23):2763-2771, 2013. Google Scholar
  10. R. Lin, S. Olariu, and G. Pruesse. An optimal path cover algorithm for cographs. Computers & Mathematics with Applications, 30(8):75-83, 1995. Google Scholar
  11. Nadimpalli VR Mahadev and Uri N Peled. Threshold graphs and related topics. Elsevier, 1995. Google Scholar
  12. J. Pan and G. J. Chang. Isometric-path numbers of block graphs. Information processing letters, 93(2):99-102, 2005. Google Scholar
  13. S. Porschen, T. Schmidt, E. Speckenmeyer, and A. Wotzlaw. XSAT and NAE-SAT of linear CNF classes. Discrete Applied Mathematics, 167:1-14, 2014. Google Scholar
  14. M. Thiessen and T. Gärtner. Active learning of convex halfspaces on graphs. Advances in Neural Information Processing Systems, 34:23413-23425, 2021. Google Scholar
  15. R. Van Bevern, R. Bredereck, L. Bulteau, J. Chen, V. Froese, R. Niedermeier, and G. J. Woeginger. Partitioning perfect graphs into stars. Journal of Graph Theory, 85(2):297-335, 2017. Google Scholar
  16. M. Yannakakis. The complexity of the partial order dimension problem. SIAM Journal on Algebraic Discrete Methods, 3(3):351-358, 1982. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail