Krenn-Gu Conjecture for Sparse Graphs

Authors L. Sunil Chandran , Rishikesh Gajjala , Abraham M. Illickan



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2024.41.pdf
  • Filesize: 0.81 MB
  • 15 pages

Document Identifiers

Author Details

L. Sunil Chandran
  • Indian Institute of Science, Bengaluru, India
Rishikesh Gajjala
  • Indian Institute of Science, Bengaluru, India
Abraham M. Illickan
  • University of California, Irvine, CA, USA

Cite AsGet BibTex

L. Sunil Chandran, Rishikesh Gajjala, and Abraham M. Illickan. Krenn-Gu Conjecture for Sparse Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 41:1-41:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.MFCS.2024.41

Abstract

Greenberger–Horne–Zeilinger (GHZ) states are quantum states involving at least three entangled particles. They are of fundamental interest in quantum information theory, and the construction of such states of high dimension has various applications in quantum communication and cryptography. Krenn, Gu and Zeilinger discovered a correspondence between a large class of quantum optical experiments which produce GHZ states and edge-weighted edge-coloured multi-graphs with some special properties called the GHZ graphs. On such GHZ graphs, a graph parameter called dimension can be defined, which is the same as the dimension of the GHZ state produced by the corresponding experiment. Krenn and Gu conjectured that the dimension of any GHZ graph with more than 4 vertices is at most 2. An affirmative resolution of the Krenn-Gu conjecture has implications for quantum resource theory. Moreover, this would save huge computational resources used for finding experiments which lead to higher dimensional GHZ states. On the other hand, the construction of a GHZ graph on a large number of vertices with a high dimension would lead to breakthrough results. In this paper, we study the existence of GHZ graphs from the perspective of the Krenn-Gu conjecture and show that the conjecture is true for graphs of vertex connectivity at most 2 and for cubic graphs. We also show that the minimal counterexample to the conjecture should be 4-connected. Such information could be of great help in the search for GHZ graphs using existing tools like PyTheus. While the impact of the work is in quantum physics, the techniques in this paper are purely combinatorial, and no background in quantum physics is required to understand them.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Discrete mathematics
Keywords
  • Graph colourings
  • Perfect matchings
  • Quantum Physics

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Alain Aspect, John F. Clauser, and Anton Zeilinger. The nobel prize in physics 2022. bit.ly/3RZmMYg. Accessed: 14-02-2023.
  2. J. S. Bell. On the einstein podolsky rosen paradox. Physics Physique Fizika, 1:195-200, November 1964. URL: https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195.
  3. Ilya Bogdanov. Solution to graphs with only disjoint perfect matchings. bit.ly/3x8hUGQ. Accessed: 09-02-2023.
  4. Dik Bouwmeester, Jian-Wei Pan, Matthew Daniell, Harald Weinfurter, and Anton Zeilinger. Observation of three-photon greenberger-horne-zeilinger entanglement. Phys. Rev. Lett., 82:1345-1349, February 1999. URL: https://doi.org/10.1103/PhysRevLett.82.1345.
  5. Alba Cervera-Lierta, Mario Krenn, and Alán Aspuru-Guzik. Design of quantum optical experiments with logic artificial intelligence. CoRR, abs/2109.13273, 2021. URL: https://arxiv.org/abs/2109.13273.
  6. L. Sunil Chandran and Rishikesh Gajjala. Perfect matchings and quantum physics: Progress on krenn’s conjecture. CoRR, abs/2202.05562, 2022. URL: https://arxiv.org/abs/2202.05562.
  7. L.Sunil Chandran and Rishikesh Gajjala. Graph-theoretic insights on the constructability of complex entangled states. CoRR, abs/2304.06407, 2023. URL: https://doi.org/10.48550/arXiv.2304.06407.
  8. Daniel M. Greenberger, Michael A. Horne, and Anton Zeilinger. Going Beyond Bell’s Theorem, pages 69-72. Springer Netherlands, Dordrecht, 1989. URL: https://doi.org/10.1007/978-94-017-0849-4_10.
  9. Xuemei Gu, Lijun Chen, Anton Zeilinger, and Mario Krenn. Quantum experiments and graphs. iii. high-dimensional and multiparticle entanglement. Physical Review A, 99, March 2019. URL: https://doi.org/10.1103/PhysRevA.99.032338.
  10. Xuemei Gu, Manuel Erhard, Anton Zeilinger, and Mario Krenn. Quantum experiments and graphs ii: Quantum interference, computation, and state generation. Proceedings of the National Academy of Sciences, 116(10):4147-4155, 2019. URL: https://doi.org/10.1073/pnas.1815884116.
  11. Xuemei Gu and Mario Krenn. Compact greenberger-horne-zeilinger state generation via frequency combs and graph theory. Frontiers of Physics, 15(6), November 2020. URL: https://doi.org/10.1007/s11467-020-1028-7.
  12. Mario Krenn. Inherited vertex coloring of graphs. bit.ly/40GJXL3. Accessed: 09-02-2023.
  13. Mario Krenn, Xuemei Gu, and Daniel Soltész. Questions on the structure of perfect matchings inspired by quantum physics. arXiv preprint arXiv:1902.06023, 2019. Google Scholar
  14. Mario Krenn, Xuemei Gu, and Anton Zeilinger. Quantum experiments and graphs: Multiparty states as coherent superpositions of perfect matchings. Physical review letters, 119 24:240403, 2017. Google Scholar
  15. Mario Krenn, Jakob S. Kottmann, Nora Tischler, and Alán Aspuru-Guzik. Conceptual understanding through efficient automated design of quantum optical experiments. Phys. Rev. X, 11:031044, August 2021. URL: https://doi.org/10.1103/PhysRevX.11.031044.
  16. Jay Lawrence. Rotational covariance and greenberger-horne-zeilinger theorems for three or more particles of any dimension. Phys. Rev. A, 89:012105, January 2014. URL: https://doi.org/10.1103/PhysRevA.89.012105.
  17. Jay Lawrence. Mermin inequalities for perfect correlations in many-qutrit systems. Phys. Rev. A, 95:042123, April 2017. URL: https://doi.org/10.1103/PhysRevA.95.042123.
  18. Kevin Mantey. Krenn-gu conjecture is true for graphs with four vertices. http://tinyurl.com/4e5zjvpx. Accessed: 14-02-2024.
  19. Dustin Mixon. A graph colouring problem from quantum physics with prizes! bit.ly/3Xk5KFm. Accessed: 09-02-2023.
  20. Aaron Neugebauer. Rainbow matchings in color-spanned graphs. Bachelor Thesis, Universität Würzburg, 2022. Accessed: 09-02-2023. URL: bit.ly/40CJCsV.
  21. Jian-Wei Pan, Dik Bouwmeester, Matthew Daniell, Harald Weinfurter, and Anton Zeilinger. Experimental test of quantum nonlocality in three-photon greenbergerendashhorneendashzeilinger entanglement. Nature, 403(6769):515-519, February 2000. URL: https://doi.org/10.1038/35000514.
  22. Matej Pivoluska, Marcus Huber, and Mehul Malik. Layered quantum key distribution. Phys. Rev. A, 97:032312, March 2018. URL: https://doi.org/10.1103/PhysRevA.97.032312.
  23. Carlos Ruiz-Gonzalez, Sören Arlt, Jan Petermann, Sharareh Sayyad, Tareq Jaouni, Ebrahim Karimi, Nora Tischler, Xuemei Gu, and Mario Krenn. Digital discovery of 100 diverse quantum experiments with pytheus. Quantum, 7:1204, 2023. URL: https://doi.org/10.22331/Q-2023-12-12-1204.
  24. Junghee Ryu, Changhyoup Lee, Marek Żukowski, and Jinhyoung Lee. Greenberger-horne-zeilinger theorem for n qudits. Phys. Rev. A, 88:042101, October 2013. URL: https://doi.org/10.1103/PhysRevA.88.042101.
  25. Moshe Y. Vardi and Zhiwei Zhang. Quantum-inspired perfect matching under vertex-color constraints. CoRR, abs/2209.13063, 2022. URL: https://doi.org/10.48550/arXiv.2209.13063.
  26. Moshe Y. Vardi and Zhiwei Zhang. Solving quantum-inspired perfect matching problems via tutte-theorem-based hybrid boolean constraints. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China, pages 2039-2048. ijcai.org, 2023. URL: https://doi.org/10.24963/IJCAI.2023/227.
  27. Xi-Lin Wang, Luo-Kan Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Yu-Ao Chen, Chao-Yang Lu, and Jian-Wei Pan. Experimental ten-photon entanglement. Phys. Rev. Lett., 117:210502, November 2016. URL: https://doi.org/10.1103/PhysRevLett.117.210502.
  28. Han-Sen Zhong, Yuan Li, Wei Li, Li-Chao Peng, Zu-En Su, Yi Hu, Yu-Ming He, Xing Ding, Weijun Zhang, Hao Li, Lu Zhang, Zhen Wang, Lixing You, Xi-Lin Wang, Xiao Jiang, Li Li, Yu-Ao Chen, Nai-Le Liu, Chao-Yang Lu, and Jian-Wei Pan. 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett., 121:250505, December 2018. URL: https://doi.org/10.1103/PhysRevLett.121.250505.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail