An Oracle with no UP-Complete Sets, but NP = PSPACE

Authors David Dingel , Fabian Egidy , Christian Glaßer



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2024.50.pdf
  • Filesize: 0.85 MB
  • 17 pages

Document Identifiers

Author Details

David Dingel
  • Julius-Maximilians-Universität Würzburg, Germany
Fabian Egidy
  • Julius-Maximilians-Universität Würzburg, Germany
Christian Glaßer
  • Julius-Maximilians-Universität Würzburg, Germany

Acknowledgements

We thank the referees for their helpful feedback. Special thanks to the anonymous reviewer who pointed us to related literature and brought several open questions to our attention.

Cite AsGet BibTex

David Dingel, Fabian Egidy, and Christian Glaßer. An Oracle with no UP-Complete Sets, but NP = PSPACE. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 50:1-50:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.MFCS.2024.50

Abstract

We construct an oracle relative to which NP = PSPACE, but UP has no many-one complete sets. This combines the properties of an oracle by Hartmanis and Hemachandra [J. Hartmanis and L. A. Hemachandra, 1988] and one by Ogiwara and Hemachandra [Ogiwara and Hemachandra, 1991]. The oracle provides new separations of classical conjectures on optimal proof systems and complete sets in promise classes. This answers several questions by Pudlák [P. Pudlák, 2017], e.g., the implications UP ⟹ CON^𝖭 and SAT ⟹ TFNP are false relative to our oracle. Moreover, the oracle demonstrates that, in principle, it is possible that TFNP-complete problems exist, while at the same time SAT has no p-optimal proof systems.

Subject Classification

ACM Subject Classification
  • Theory of computation → Problems, reductions and completeness
  • Theory of computation → Oracles and decision trees
  • Theory of computation → Complexity theory and logic
Keywords
  • Computational Complexity
  • Promise Classes
  • Complete Sets
  • Oracle Construction

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. E. W. Allender and R. S. Rubinstein. P-printable sets. SIAM Journal on Computing, 17(6):1193-1202, 1988. Google Scholar
  2. P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi. The relative complexity of NP search problems. In Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, STOC '95, pages 303-314, New York, NY, USA, 1995. Association for Computing Machinery. URL: https://doi.org/10.1145/225058.225147.
  3. O. Beyersdorff. Representable disjoint NP-pairs. In Proceedings 24th International Conference on Foundations of Software Technology and Theoretical Computer Science, volume 3328 of Lecture Notes in Computer Science, pages 122-134. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-30538-5_11.
  4. O. Beyersdorff. Disjoint NP-pairs from propositional proof systems. In Proceedings of Third International Conference on Theory and Applications of Models of Computation, volume 3959 of Lecture Notes in Computer Science, pages 236-247. Springer, 2006. URL: https://doi.org/10.18452/15520.
  5. O. Beyersdorff. Classes of representable disjoint NP-pairs. Theoretical Computer Science, 377(1-3):93-109, 2007. URL: https://doi.org/10.1016/j.tcs.2007.02.005.
  6. O. Beyersdorff. The deduction theorem for strong propositional proof systems. Theory of Computing Systems, 47(1):162-178, 2010. URL: https://doi.org/10.1007/s00224-008-9146-6.
  7. O. Beyersdorff, J. Köbler, and J. Messner. Nondeterministic functions and the existence of optimal proof systems. Theoretical Computer Science, 410(38-40):3839-3855, 2009. URL: https://doi.org/10.1016/j.tcs.2009.05.021.
  8. O. Beyersdorff and Z. Sadowski. Do there exist complete sets for promise classes? Mathematical Logic Quarterly, 57(6):535-550, 2011. URL: https://doi.org/10.1002/malq.201010021.
  9. N. Bitansky, O. Paneth, and A. Rosen. On the cryptographic hardness of finding a nash equilibrium. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pages 1480-1498, 2015. URL: https://doi.org/10.1109/FOCS.2015.94.
  10. J. Cai and L. Hemachandra. On the power of parity polynomial time. Mathematical systems theory, 23:95-106, 1990. URL: https://doi.org/10.1007/BF02090768.
  11. S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. Journal of Symbolic Logic, 44:36-50, 1979. URL: https://doi.org/10.2307/2273702.
  12. S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC '71, pages 151-158, New York, NY, USA, 1971. Association for Computing Machinery. URL: https://doi.org/10.1145/800157.805047.
  13. T. Dose. Further oracles separating conjectures about incompleteness in the finite domain. Theoretical Computer Science, 847:76-94, 2020. URL: https://doi.org/10.1016/j.tcs.2020.09.040.
  14. T. Dose. An oracle separating conjectures about incompleteness in the finite domain. Theoretical Computer Science, 809:466-481, 2020. URL: https://doi.org/10.1016/j.tcs.2020.01.003.
  15. T. Dose and C. Glaßer. NP-completeness, proof systems, and disjoint NP-pairs. In C. Paul and M. Bläser, editors, 37th International Symposium on Theoretical Aspects of Computer Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages 9:1-9:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.STACS.2020.9.
  16. J. Edmonds. Optimum branchings. Journal of Research of the national Bureau of Standards B, 71(4):233-240, 1966. Google Scholar
  17. A. Ehrmanntraut, F. Egidy, and C. Glaßer. Oracle with P = NP ∩ coNP, but No Many-One Completeness in UP, DisjNP, and DisjCoNP. In S. Szeider, R. Ganian, and A. Silva, editors, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022), volume 241 of Leibniz International Proceedings in Informatics (LIPIcs), pages 45:1-45:15, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.MFCS.2022.45.
  18. S. A. Fenner, L. Fortnow, A. V. Naik, and J. D. Rogers. Inverting onto functions. Information and Computation, 186(1):90-103, 2003. URL: https://doi.org/10.1016/S0890-5401(03)00119-6.
  19. S. Garg, O. Pandey, and A. Srinivasan. Revisiting the cryptographic hardness of finding a nash equilibrium. In M. Robshaw and J. Katz, editors, Advances in Cryptology - CRYPTO 2016, pages 579-604, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg. Google Scholar
  20. C. Glaßer, A. L. Selman, S. Sengupta, and L. Zhang. Disjoint NP-pairs. SIAM Journal on Computing, 33(6):1369-1416, 2004. URL: https://doi.org/10.1137/S0097539703425848.
  21. C. Glaßer, A. L. Selman, and L. Zhang. Canonical disjoint NP-pairs of propositional proof systems. Theoretical Computer Science, 370:60-73, 2007. URL: https://doi.org/10.1007/11549345_35.
  22. C. Glaßer, A. L. Selman, and L. Zhang. The informational content of canonical disjoint NP-pairs. International Journal of Foundations of Computer Science, 20(3):501-522, 2009. URL: https://doi.org/10.1007/978-3-540-73545-8_31.
  23. P. W. Goldberg and C. H. Papadimitriou. TFNP: An update. In D. Fotakis, A. Pagourtzis, and V. Th. Paschos, editors, Algorithms and Complexity, pages 3-9, Cham, 2017. Springer International Publishing. Google Scholar
  24. M. Göös, A. Hollender, S. Jain, G. Maystre, W. Pires, R. Robere, and R. Tao. Further Collapses in TFNP. In S. Lovett, editor, 37th Computational Complexity Conference (CCC 2022), volume 234 of Leibniz International Proceedings in Informatics (LIPIcs), pages 33:1-33:15, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.CCC.2022.33.
  25. J. Hartmanis and L. A. Hemachandra. Complexity classes without machines: On complete languages for UP. Theoretical Computer Science, 58:129-142, 1988. Google Scholar
  26. L. A. Hemaspaandra, S. Jain, and N. K. Vereshchagin. Banishing robust turing completeness. International Journal of Foundations of Computer Science, 04(03):245-265, 1993. URL: https://doi.org/10.1142/S012905419300016X.
  27. R. Jawale, Y. T. Kalai, D. Khurana, and R. Zhang. Snargs for bounded depth computations and ppad hardness from sub-exponential lwe. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021, pages 708-721, New York, NY, USA, 2021. Association for Computing Machinery. URL: https://doi.org/10.1145/3406325.3451055.
  28. E. Jeřábek. Integer factoring and modular square roots. arXiv e-prints, page arXiv:1207.5220, July 2012. URL: https://doi.org/10.48550/arXiv.1207.5220.
  29. D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search? Journal of Computer and System Sciences, 37(1):79-100, 1988. URL: https://doi.org/10.1016/0022-0000(88)90046-3.
  30. R. Kannan, 1979. Sipser [M. Sipser, 1982] cites an unpublished work by Kannan for asking if there is a set complete for NP ∩ coNP. Google Scholar
  31. E. Khaniki. New relations and separations of conjectures about incompleteness in the finite domain. The Journal of Symbolic Logic, 87(3):912-937, 2022. URL: https://doi.org/10.1017/jsl.2021.99.
  32. J. Köbler, J. Messner, and J. Torán. Optimal proof systems imply complete sets for promise classes. Information and Computation, 184(1):71-92, 2003. URL: https://doi.org/10.1016/S0890-5401(03)00058-0.
  33. J. Krajíček. Bounded Arithmetic, Propositional Logic and Complexity Theory. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1995. URL: https://doi.org/10.1017/CBO9780511529948.
  34. J. Krajíček and P. Pudlák. Propositional proof systems, the consistency of first order theories and the complexity of computations. Journal of Symbolic Logic, 54:1063-1079, 1989. URL: https://doi.org/10.2307/2274765.
  35. L. A. Levin. Universal search problems. Problemy Peredachi Informatsii, 9(3):115-116, 1973. URL: https://doi.org/https://www.mathnet.ru/ppi914.
  36. N. Megiddo and C. H. Papadimitriou. On total functions, existence theorems and computational complexity. Theoretical Computer Science, 81(2):317-324, 1991. URL: https://doi.org/10.1016/0304-3975(91)90200-L.
  37. J. Messner. On the Simulation Order of Proof Systems. PhD thesis, Universität Ulm, 2000. Google Scholar
  38. M. Ogiwara and L.A. Hemachandra. A complexity theory for feasible closure properties. In [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference, pages 16-29, 1991. URL: https://doi.org/10.1109/SCT.1991.160240.
  39. C. H. Papadimitriou. On inefficient proofs of existence and complexity classes. In J. Neŝetril and M. Fiedler, editors, Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity, volume 51 of Annals of Discrete Mathematics, pages 245-250. Elsevier, 1992. URL: https://doi.org/10.1016/S0167-5060(08)70637-X.
  40. C. H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs of existence. Journal of Computer and System Sciences, 48(3):498-532, 1994. URL: https://doi.org/10.1016/S0022-0000(05)80063-7.
  41. P. Pudlák. Logical foundations of mathematics and computational complexity: A gentle introduction. Springer, 2013. Google Scholar
  42. P. Pudlák. On some problems in proof complexity. In O. Beyersdorff, E. A. Hirsch, J. Krajíček, and R. Santhanam, editors, Optimal algorithms and proofs (Dagstuhl Seminar 14421), volume 4, pages 63-63, Dagstuhl, Germany, 2014. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/DagRep.4.10.51.
  43. P. Pudlák. Incompleteness in the finite domain. The Bulletin of Symbolic Logic, 23(4):405-441, 2017. Google Scholar
  44. P. Pudlák. The lengths of proofs. In S. R. Buss, editor, Handbook of Proof Theory, pages 547-637. Elsevier, Amsterdam, 1998. Google Scholar
  45. A. Razborov. On provably disjoint NP-pairs. BRICS Report Series, 36, 1994. URL: https://doi.org/10.7146/brics.v1i36.21607.
  46. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120-126, February 1978. URL: https://doi.org/10.1145/359340.359342.
  47. A. Shamir. IP=PSPACE (interactive proof=polynomial space). In Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science, pages 11-15 vol.1, 1990. URL: https://doi.org/10.1109/FSCS.1990.89519.
  48. I. Simon. On Some Subrecursive Reducibilities. PhD thesis, Stanford University, 1977. Google Scholar
  49. M. Sipser. On relativization and the existence of complete sets. In Proceedings 9th ICALP, volume 140 of Lecture Notes in Computer Science, pages 523-531. Springer Verlag, 1982. URL: https://doi.org/10.1007/BFb0012797.
  50. L. G. Valiant. Relative complexity of checking and evaluation. Information Processing Letters, 5:20-23, 1976. URL: https://doi.org/10.1016/0020-0190(76)90097-1.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail