Minimal Obstructions to C₅-Coloring in Hereditary Graph Classes

Authors Jan Goedgebeur , Jorik Jooken , Karolina Okrasa , Paweł Rzążewski , Oliver Schaudt



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2024.55.pdf
  • Filesize: 1.15 MB
  • 15 pages

Document Identifiers

Author Details

Jan Goedgebeur
  • Department of Computer Science, KU Leuven, Kortrijk, Belgium
  • Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Belgium
Jorik Jooken
  • Department of Computer Science, KU Leuven, Kortrijk, Belgium
Karolina Okrasa
  • Warsaw University of Technology, Poland
Paweł Rzążewski
  • Warsaw University of Technology, Poland
  • University of Warsaw, Poland
Oliver Schaudt
  • University of Cologne, Germany

Acknowledgements

The authors are grateful to Rémi Di Guardia for fruitful and inspiring discussions that led to this project. This project itself was initiated at Dagstuhl Seminar 22481 "Vertex Partitioning in Graphs: From Structure to Algorithms." We are grateful to the organizers and other participants for a productive atmosphere.

Cite AsGet BibTex

Jan Goedgebeur, Jorik Jooken, Karolina Okrasa, Paweł Rzążewski, and Oliver Schaudt. Minimal Obstructions to C₅-Coloring in Hereditary Graph Classes. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 55:1-55:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.MFCS.2024.55

Abstract

For graphs G and H, an H-coloring of G is an edge-preserving mapping from V(G) to V(H). Note that if H is the triangle, then H-colorings are equivalent to 3-colorings. In this paper we are interested in the case that H is the five-vertex cycle C₅. A minimal obstruction to C₅-coloring is a graph that does not have a C₅-coloring, but every proper induced subgraph thereof has a C₅-coloring. In this paper we are interested in minimal obstructions to C₅-coloring in F-free graphs, i.e., graphs that exclude some fixed graph F as an induced subgraph. Let P_t denote the path on t vertices, and let S_{a,b,c} denote the graph obtained from paths P_{a+1},P_{b+1},P_{c+1} by identifying one of their endvertices. We show that there is only a finite number of minimal obstructions to C₅-coloring among F-free graphs, where F ∈ {P₈, S_{2,2,1}, S_{3,1,1}} and explicitly determine all such obstructions. This extends the results of Kamiński and Pstrucha [Discr. Appl. Math. 261, 2019] who proved that there is only a finite number of P₇-free minimal obstructions to C₅-coloring, and of Dębski et al. [ISAAC 2022 Proc.] who showed that the triangle is the unique S_{2,1,1}-free minimal obstruction to C₅-coloring. We complement our results with a construction of an infinite family of minimal obstructions to C₅-coloring, which are simultaneously P_{13}-free and S_{2,2,2}-free. We also discuss infinite families of F-free minimal obstructions to H-coloring for other graphs H.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph enumeration
  • Mathematics of computing → Graph coloring
  • Mathematics of computing → Graph algorithms
Keywords
  • graph homomorphism
  • critical graphs
  • hereditary graph classes

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for NP-hard problems restricted to partial k-trees. Discret. Appl. Math., 23(1):11-24, 1989. URL: https://doi.org/10.1016/0166-218X(89)90031-0.
  2. Flavia Bonomo, Maria Chudnovsky, Peter Maceli, Oliver Schaudt, Maya Stein, and Mingxian Zhong. Three-coloring and list three-coloring of graphs without induced paths on seven vertices. Comb., 38(4):779-801, 2018. URL: https://doi.org/10.1007/s00493-017-3553-8.
  3. Daniel Bruce, Chính T. Hoàng, and Joe Sawada. A certifying algorithm for 3-colorability of P₅-free graphs. In Yingfei Dong, Ding-Zhu Du, and Oscar H. Ibarra, editors, Algorithms and Computation, 20th International Symposium, ISAAC 2009, Honolulu, Hawaii, USA, December 16-18, 2009. Proceedings, volume 5878 of Lecture Notes in Computer Science, pages 594-604. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-10631-6_61.
  4. Maria Chudnovsky, Jan Goedgebeur, Oliver Schaudt, and Mingxian Zhong. Obstructions for three-coloring graphs without induced paths on six vertices. J. Comb. Theory, Ser. B, 140:45-83, 2020. URL: https://doi.org/10.1016/j.jctb.2019.04.006.
  5. Maria Chudnovsky, Shenwei Huang, Pawel Rzążewski, Sophie Spirkl, and Mingxian Zhong. Complexity of C_k-coloring in hereditary classes of graphs. Inf. Comput., 292:105015, 2023. URL: https://doi.org/10.1016/J.IC.2023.105015.
  6. Maria Chudnovsky, Shenwei Huang, Sophie Spirkl, and Mingxian Zhong. List 3-Coloring graphs with no induced P₆ + rP₃. Algorithmica, 83(1):216-251, 2021. URL: https://doi.org/10.1007/S00453-020-00754-Y.
  7. Kris Coolsaet, Sven D'hondt, and Jan Goedgebeur. House of Graphs 2.0: A database of interesting graphs and more. Discret. Appl. Math., 325:97-107, 2023. URL: https://doi.org/10.1016/J.DAM.2022.10.013.
  8. Michał Dębski, Zbigniew Lonc, Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski. Computing Homomorphisms in Hereditary Graph Classes: The Peculiar Case of the 5-Wheel and Graphs with No Long Claws. In Sang Won Bae and Heejin Park, editors, 33rd International Symposium on Algorithms and Computation (ISAAC 2022), volume 248 of Leibniz International Proceedings in Informatics (LIPIcs), pages 14:1-14:16, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2022.14.
  9. Thomas Emden-Weinert, Stefan Hougardy, and Bernd Kreuter. Uniquely colourable graphs and the hardness of colouring graphs of large girth. Comb. Probab. Comput., 7(4):375-386, 1998. URL: http://journals.cambridge.org/action/displayAbstract?aid=46667.
  10. Tomás Feder and Pavol Hell. Edge list homomorphisms. Unpublished manuscript, available at URL: http://theory.stanford.edu/~tomas/edgelist.ps.
  11. M. R. Garey, David S. Johnson, Gerald L. Miller, and Christos H. Papadimitriou. The complexity of coloring circular arcs and chords. SIAM J. Algebraic Discret. Methods, 1(2):216-227, 1980. URL: https://doi.org/10.1137/0601025.
  12. Jan Goedgebeur, Jorik Jooken, Karolina Okrasa, Paweł Rzążewski, and Oliver Schaudt. Minimal obstructions to C₅-coloring in hereditary graph classes. CoRR, abs/2404.11704, 2024. URL: https://arxiv.org/abs/2404.11704.
  13. Jan Goedgebeur and Oliver Schaudt. Exhaustive generation of k-critical H-free graphs. J. Graph Theory, 87(2):188-207, 2018. URL: https://doi.org/10.1002/JGT.22151.
  14. Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its consequences in combinatorial optimization. Comb., 1(2):169-197, 1981. URL: https://doi.org/10.1007/BF02579273.
  15. Martin Grötschel, László Lovász, and Alexander Schrijver. Corrigendum to our paper "The ellipsoid method and its consequences in combinatorial optimization". Comb., 4(4):291-295, 1984. URL: https://doi.org/10.1007/BF02579139.
  16. Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Comb. Theory, Ser. B, 48(1):92-110, 1990. URL: https://doi.org/10.1016/0095-8956(90)90132-J.
  17. Pavol Hell and Jaroslav Nešetřil. The core of a graph. Discret. Math., 109(1-3):117-126, 1992. URL: https://doi.org/10.1016/0012-365X(92)90282-K.
  18. Chính T. Hoàng, Marcin Kamiński, Vadim V. Lozin, Joe Sawada, and Xiao Shu. Deciding k-colorability of P₅-free graphs in polynomial time. Algorithmica, 57(1):74-81, 2010. URL: https://doi.org/10.1007/s00453-008-9197-8.
  19. Chính T. Hoàng, Brian Moore, Daniel Recoskie, Joe Sawada, and Martin Vatshelle. Constructions of k-critical P₅-free graphs. Discret. Appl. Math., 182:91-98, 2015. URL: https://doi.org/10.1016/j.dam.2014.06.007.
  20. Ian Holyer. The NP-completeness of edge-coloring. SIAM J. Comput., 10:718-720, 1981. Google Scholar
  21. Shenwei Huang. Improved complexity results on k-coloring P_t-free graphs. Eur. J. Comb., 51:336-346, 2016. URL: https://doi.org/10.1016/j.ejc.2015.06.005.
  22. Jorik Jooken. Source code of algorithm Expand. https://github.com/JorikJooken/ObstructionsForC5Coloring, 2024.
  23. Marcin Kamiński and Anna Pstrucha. Certifying coloring algorithms for graphs without long induced paths. Discret. Appl. Math., 261:258-267, 2019. URL: https://doi.org/10.1016/j.dam.2018.09.031.
  24. Tereza Klimošová, Josef Malík, Tomás Masařík, Jana Novotná, Daniël Paulusma, and Veronika Slívová. Colouring (P_r+P_s)-free graphs. Algorithmica, 82(7):1833-1858, 2020. URL: https://doi.org/10.1007/S00453-020-00675-W.
  25. Daniel Leven and Zvi Galil. NP-completeness of finding the chromatic index of regular graphs. J. Algorithms, 4(1):35-44, 1983. URL: https://doi.org/10.1016/0196-6774(83)90032-9.
  26. Tomasz Łuczak and Jaroslav Nešetřil. Note on projective graphs. J. Graph Theory, 47(2):81-86, 2004. URL: https://doi.org/10.1002/JGT.20017.
  27. Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying algorithms. Comput. Sci. Rev., 5(2):119-161, 2011. URL: https://doi.org/10.1016/J.COSREV.2010.09.009.
  28. Karolina Okrasa and Paweł Rzążewski. Complexity of the list homomorphism problem in hereditary graph classes. In Markus Bläser and Benjamin Monmege, editors, 38th International Symposium on Theoretical Aspects of Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken, Germany (Virtual Conference), volume 187 of LIPIcs, pages 54:1-54:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.STACS.2021.54.
  29. Marcin Pilipczuk, Michał Pilipczuk, and Paweł Rzążewski. Quasi-polynomial-time algorithm for Independent Set in P_t-free graphs via shrinking the space of induced paths. In Hung Viet Le and Valerie King, editors, 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference, January 11-12, 2021, pages 204-209. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976496.23.
  30. Sophie Spirkl, Maria Chudnovsky, and Mingxian Zhong. Four-coloring P₆-free graphs. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1239-1256. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.76.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail