Parameterized Vertex Integrity Revisited

Authors Tesshu Hanaka , Michael Lampis , Manolis Vasilakis , Kanae Yoshiwatari



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2024.58.pdf
  • Filesize: 0.76 MB
  • 14 pages

Document Identifiers

Author Details

Tesshu Hanaka
  • Department of Informatics, Kyushu University, Fukuoka, Japan
Michael Lampis
  • Université Paris-Dauphine, PSL University, CNRS UMR7243, LAMSADE, Paris, France
Manolis Vasilakis
  • Université Paris-Dauphine, PSL University, CNRS UMR7243, LAMSADE, Paris, France
Kanae Yoshiwatari
  • Department of Mathematical Informatics, Nagoya University, Aichi, Japan

Cite AsGet BibTex

Tesshu Hanaka, Michael Lampis, Manolis Vasilakis, and Kanae Yoshiwatari. Parameterized Vertex Integrity Revisited. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 58:1-58:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.MFCS.2024.58

Abstract

Vertex integrity is a graph parameter that measures the connectivity of a graph. Informally, its meaning is that a graph has small vertex integrity if it has a small separator whose removal disconnects the graph into connected components which are themselves also small. Graphs with low vertex integrity are very structured; this renders many hard problems tractable and has recently attracted interest in this notion from the parameterized complexity community. In this paper we revisit the NP-complete problem of computing the vertex integrity of a given graph from the point of view of structural parameterizations. We present a number of new results, which also answer some recently posed open questions from the literature. Specifically, we show that unweighted vertex integrity is W[1]-hard parameterized by treedepth; we show that the problem remains W[1]-hard if we parameterize by feedback edge set size (via a reduction from a Bin Packing variant which may be of independent interest); and complementing this we show that the problem is FPT by max-leaf number. Furthermore, for weighted vertex integrity, we show that the problem admits a single-exponential FPT algorithm parameterized by vertex cover or by modular width, the latter result improving upon a previous algorithm which required weights to be polynomially bounded.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Parameterized Complexity
  • Treedepth
  • Vertex Integrity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. C. A. Barefoot, Roger Entringer, and Henda Swart. Vulnerability in graphs - A comparative survey. In Proceedings of the first Carbondale combinatorics conference (Carbondale, Ill., 1986), volume 1, pages 13-22, 1987. Google Scholar
  2. Rémy Belmonte, Tesshu Hanaka, Ioannis Katsikarelis, Michael Lampis, Hirotaka Ono, and Yota Otachi. Parameterized complexity of safe set. J. Graph Algorithms Appl., 24(3):215-245, 2020. URL: https://doi.org/10.7155/JGAA.00528.
  3. Matthias Bentert, Klaus Heeger, and Tomohiro Koana. Fully polynomial-time algorithms parameterized by vertex integrity using fast matrix multiplication. In 31st Annual European Symposium on Algorithms, ESA 2023, volume 274 of LIPIcs, pages 16:1-16:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.ESA.2023.16.
  4. Sriram Bhyravarapu, Lawqueen Kanesh, A. Mohanapriya, Nidhi Purohit, N. Sadagopan, and Saket Saurabh. On the parameterized complexity of minus domination. In SOFSEM 2024: Theory and Practice of Computer Science - 49th International Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2024, volume 14519 of Lecture Notes in Computer Science, pages 96-110. Springer, 2024. URL: https://doi.org/10.1007/978-3-031-52113-3_7.
  5. Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theor. Comput. Sci., 411(40-42):3736-3756, 2010. URL: https://doi.org/10.1016/J.TCS.2010.06.026.
  6. Lane H. Clark, Roger C. Entringer, and Michael R. Fellows. Computational complexity of integrity. J. Combin. Math. Combin. Comput., 2:179-191, 1987. Google Scholar
  7. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  8. Reinhard Diestel. Graph Theory, volume 173 of Graduate texts in mathematics. Springer, 2017. URL: https://doi.org/10.1007/978-3-662-53622-3.
  9. Pål Grønås Drange, Markus S. Dregi, and Pim van 't Hof. On the computational complexity of vertex integrity and component order connectivity. Algorithmica, 76(4):1181-1202, 2016. URL: https://doi.org/10.1007/S00453-016-0127-X.
  10. Pavel Dvorák, Eduard Eiben, Robert Ganian, Dusan Knop, and Sebastian Ordyniak. The complexity landscape of decompositional parameters for ILP: programs with few global variables and constraints. Artif. Intell., 300:103561, 2021. URL: https://doi.org/10.1016/J.ARTINT.2021.103561.
  11. Michael R. Fellows, Bart M. P. Jansen, and Frances A. Rosamond. Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity. Eur. J. Comb., 34(3):541-566, 2013. URL: https://doi.org/10.1016/J.EJC.2012.04.008.
  12. Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Matthias Mnich, Frances A. Rosamond, and Saket Saurabh. The complexity ecology of parameters: An illustration using bounded max leaf number. Theory Comput. Syst., 45(4):822-848, 2009. URL: https://doi.org/10.1007/S00224-009-9167-9.
  13. Michael R. Fellows and Sam Stueckle. The immersion order, forbidden subgraphs and the complexity of network integrity. J. Combin. Math. Combin. Comput., 6:23-32, 1989. Google Scholar
  14. Shinya Fujita and Michitaka Furuya. Safe number and integrity of graphs. Discret. Appl. Math., 247:398-406, 2018. URL: https://doi.org/10.1016/J.DAM.2018.03.074.
  15. Ajinkya Gaikwad and Soumen Maity. Offensive alliances in graphs. Theor. Comput. Sci., 989:114401, 2024. URL: https://doi.org/10.1016/J.TCS.2024.114401.
  16. Ajinkya Gaikwad and Soumen Maity. On structural parameterizations of the harmless set problem. Algorithmica, 86(5):1475-1511, 2024. URL: https://doi.org/10.1007/S00453-023-01199-9.
  17. Jakub Gajarský, Michael Lampis, Kazuhisa Makino, Valia Mitsou, and Sebastian Ordyniak. Parameterized algorithms for parity games. In Mathematical Foundations of Computer Science 2015 - 40th International Symposium, MFCS 2015, volume 9235 of Lecture Notes in Computer Science, pages 336-347. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-48054-0_28.
  18. Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized algorithms for modular-width. In Parameterized and Exact Computation - 8th International Symposium, IPEC 2013, volume 8246 of Lecture Notes in Computer Science, pages 163-176. Springer, 2013. URL: https://doi.org/10.1007/978-3-319-03898-8_15.
  19. Robert Ganian, Fabian Klute, and Sebastian Ordyniak. On structural parameterizations of the bounded-degree vertex deletion problem. Algorithmica, 83(1):297-336, 2021. URL: https://doi.org/10.1007/S00453-020-00758-8.
  20. Tatsuya Gima, Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, and Yota Otachi. Exploring the gap between treedepth and vertex cover through vertex integrity. Theor. Comput. Sci., 918:60-76, 2022. URL: https://doi.org/10.1016/J.TCS.2022.03.021.
  21. Tatsuya Gima, Tesshu Hanaka, Yasuaki Kobayashi, Ryota Murai, Hirotaka Ono, and Yota Otachi. Structural parameterizations of vertex integrity. In WALCOM: Algorithms and Computation - 18th International Conference and Workshops on Algorithms and Computation, WALCOM 2024, volume 14549 of Lecture Notes in Computer Science, pages 406-420. Springer, 2024. URL: https://doi.org/10.1007/978-981-97-0566-5_29.
  22. Tatsuya Gima and Yota Otachi. Extended MSO model checking via small vertex integrity. Algorithmica, 86(1):147-170, 2024. URL: https://doi.org/10.1007/S00453-023-01161-9.
  23. Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed number of bins revisited. J. Comput. Syst. Sci., 79(1):39-49, 2013. URL: https://doi.org/10.1016/J.JCSS.2012.04.004.
  24. Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a symposium on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85-103. Plenum Press, New York, 1972. URL: https://doi.org/10.1007/978-1-4684-2001-2_9.
  25. Daniel J. Kleitman and Douglas B. West. Spanning trees with many leaves. SIAM J. Discret. Math., 4(1):99-106, 1991. URL: https://doi.org/10.1137/0404010.
  26. Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica, 64(1):19-37, 2012. URL: https://doi.org/10.1007/S00453-011-9554-X.
  27. Michael Lampis and Valia Mitsou. Fine-grained meta-theorems for vertex integrity. In 32nd International Symposium on Algorithms and Computation, ISAAC 2021, volume 212 of LIPIcs, pages 34:1-34:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.ISAAC.2021.34.
  28. Michael Lampis and Manolis Vasilakis. Structural parameterizations for two bounded degree problems revisited. In 31st Annual European Symposium on Algorithms, ESA 2023, volume 274 of LIPIcs, pages 77:1-77:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.ESA.2023.77.
  29. Martijn van Ee. Some notes on bounded starwidth graphs. Inf. Process. Lett., 125:9-14, 2017. URL: https://doi.org/10.1016/J.IPL.2017.04.011.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail