Monotonicity of the Cops and Robber Game for Bounded Depth Treewidth

Authors Isolde Adler , Eva Fluck



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2024.6.pdf
  • Filesize: 0.72 MB
  • 18 pages

Document Identifiers

Author Details

Isolde Adler
  • University of Bamberg, Germany
Eva Fluck
  • RWTH Aachen University, Germany

Cite AsGet BibTex

Isolde Adler and Eva Fluck. Monotonicity of the Cops and Robber Game for Bounded Depth Treewidth. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 6:1-6:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.MFCS.2024.6

Abstract

We study a variation of the cops and robber game characterising treewidth, where in each round at most one cop may be placed and in each play at most q rounds are played, where q is a parameter of the game. We prove that if k cops have a winning strategy in this game, then k cops have a monotone winning strategy. As a corollary we obtain a new characterisation of bounded depth treewidth, and we give a positive answer to an open question by Fluck, Seppelt and Spitzer (2024), thus showing that graph classes of bounded depth treewidth are homomorphism distinguishing closed. Our proof of monotonicity substantially reorganises a winning strategy by first transforming it into a pre-tree decomposition, which is inspired by decompositions of matroids, and then applying an intricate breadth-first "cleaning up" procedure along the pre-tree decomposition (which may temporarily lose the property of representing a strategy), in order to achieve monotonicity while controlling the number of rounds simultaneously across all branches of the decomposition via a vertex exchange argument. We believe this can be useful in future research.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph theory
Keywords
  • tree decompositions
  • treewidth
  • treedepth
  • cops-and-robber game
  • monotonicity
  • homomorphism distinguishing closure

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Samson Abramsky, Anuj Dawar, and Pengming Wang. The pebbling comonad in finite model theory. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1-12. IEEE Computer Society, 2017. URL: https://doi.org/10.1109/LICS.2017.8005129.
  2. Isolde Adler. Marshals, monotone marshals, and hypertree-width. J. Graph Theory, 47(4):275-296, 2004. URL: https://doi.org/10.1002/JGT.20025.
  3. Isolde Adler. Games for width parameters and monotonicity. CoRR, abs/0906.3857, 2009. URL: https://arxiv.org/abs/0906.3857.
  4. Isolde Adler and Eva Fluck. Monotonicity of the cops and robber game for bounded depth treewidth. CoRR, abs/2402.09139, 2024. URL: https://doi.org/10.48550/arXiv.2402.09139.
  5. Isolde Adler, Georg Gottlob, and Martin Grohe. Hypertree width and related hypergraph invariants. Eur. J. Comb., 28(8):2167-2181, 2007. URL: https://doi.org/10.1016/J.EJC.2007.04.013.
  6. Martin Aigner and M. Fromme. A game of cops and robbers. Discret. Appl. Math., 8(1):1-12, 1984. URL: https://doi.org/10.1016/0166-218X(84)90073-8.
  7. Omid Amini, Frédéric Mazoit, Nicolas Nisse, and Stéphan Thomassé. Submodular partition functions. Discret. Math., 309(20):6000-6008, 2009. URL: https://doi.org/10.1016/J.DISC.2009.04.033.
  8. Daniel Bienstock. Graph searching, path-width, tree-width and related problems (A survey). In Fred Roberts, Frank Hwang, and Clyde L. Monma, editors, Reliability Of Computer And Communication Networks, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, December 2-4, 1989, volume 5 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 33-50. DIMACS/AMS, 1989. URL: https://doi.org/10.1090/DIMACS/005/02.
  9. Daniel Bienstock and Paul D. Seymour. Monotonicity in graph searching. J. Algorithms, 12(2):239-245, 1991. URL: https://doi.org/10.1016/0196-6774(91)90003-H.
  10. Hans L. Bodlaender and Dimitrios M. Thilikos. Computing small search numbers in linear time. In Rodney G. Downey, Michael R. Fellows, and Frank K. H. A. Dehne, editors, Parameterized and Exact Computation, First International Workshop, IWPEC 2004, Bergen, Norway, September 14-17, 2004, Proceedings, volume 3162 of Lecture Notes in Computer Science, pages 37-48. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-28639-4_4.
  11. Anuj Dawar, Tomáš Jakl, and Luca Reggio. Lovász-Type Theorems and Game Comonads. In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1-13, June 2021. URL: https://doi.org/10.1109/LICS52264.2021.9470609.
  12. Zdeněk Dvořák. On recognizing graphs by numbers of homomorphisms. Journal of Graph Theory, 64(4):330-342, August 2010. URL: https://doi.org/10.1002/jgt.20461.
  13. Eva Fluck, Tim Seppelt, and Gian Luca Spitzer. Going Deep and Going Wide: Counting Logic and Homomorphism Indistinguishability over Graphs of Bounded Treedepth and Treewidth. In Aniello Murano and Alexandra Silva, editors, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024), volume 288 of Leibniz International Proceedings in Informatics (LIPIcs), pages 27:1-27:17, Dagstuhl, Germany, 2024. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.CSL.2024.27.
  14. Fedor V. Fomin, Pierre Fraigniaud, and Nicolas Nisse. Nondeterministic graph searching: From pathwidth to treewidth. Algorithmica, 53(3):358-373, 2009. URL: https://doi.org/10.1007/S00453-007-9041-6.
  15. Fedor V. Fomin, Petr A. Golovach, and Jan Kratochvíl. On tractability of cops and robbers game. In Giorgio Ausiello, Juhani Karhumäki, Giancarlo Mauri, and C.-H. Luke Ong, editors, Fifth IFIP International Conference On Theoretical Computer Science - TCS 2008, IFIP 20th World Computer Congress, TC 1, Foundations of Computer Science, September 7-10, 2008, Milano, Italy, volume 273 of IFIP, pages 171-185. Springer, 2008. URL: https://doi.org/10.1007/978-0-387-09680-3_12.
  16. Fedor V. Fomin and Dimitrios M. Thilikos. An annotated bibliography on guaranteed graph searching. Theor. Comput. Sci., 399(3):236-245, 2008. URL: https://doi.org/10.1016/J.TCS.2008.02.040.
  17. Matthew K. Franklin, Zvi Galil, and Moti Yung. Eavesdropping games: a graph-theoretic approach to privacy in distributed systems. J. ACM, 47(2):225-243, 2000. URL: https://doi.org/10.1145/333979.333980.
  18. Archontia C. Giannopoulou, Paul Hunter, and Dimitrios M. Thilikos. Lifo-search: A min-max theorem and a searching game for cycle-rank and tree-depth. Discret. Appl. Math., 160(15):2089-2097, 2012. URL: https://doi.org/10.1016/J.DAM.2012.03.015.
  19. Archontia C. Giannopoulou and Dimitrios M. Thilikos. A min-max theorem for lifo-search. Electron. Notes Discret. Math., 38:395-400, 2011. URL: https://doi.org/10.1016/J.ENDM.2011.09.064.
  20. Martin Grohe. Counting Bounded Tree Depth Homomorphisms. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '20, pages 507-520, New York, NY, USA, 2020. Association for Computing Machinery. event-place: Saarbrücken, Germany. URL: https://doi.org/10.1145/3373718.3394739.
  21. Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. ACM Trans. Algorithms, 11(1):4:1-4:20, 2014. URL: https://doi.org/10.1145/2636918.
  22. Martin Grohe, Gaurav Rattan, and Tim Seppelt. Homomorphism Tensors and Linear Equations. In Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229 of Leibniz International Proceedings in Informatics (LIPIcs), pages 70:1-70:20, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2022.70.
  23. Petr Hlinený and Geoff Whittle. Matroid tree-width. Eur. J. Comb., 27(7):1117-1128, 2006. URL: https://doi.org/10.1016/J.EJC.2006.06.005.
  24. Geoffrey A. Hollinger, Athanasios Kehagias, and Sanjiv Singh. GSST: anytime guaranteed search. Auton. Robots, 29(1):99-118, 2010. URL: https://doi.org/10.1007/S10514-010-9189-9.
  25. Paul Hunter and Stephan Kreutzer. Digraph measures: Kelly decompositions, games, and orderings. Theor. Comput. Sci., 399(3):206-219, 2008. URL: https://doi.org/10.1016/J.TCS.2008.02.038.
  26. Thor Johnson, Neil Robertson, Paul D. Seymour, and Robin Thomas. Directed tree-width. J. Comb. Theory, Ser. B, 82(1):138-154, 2001. URL: https://doi.org/10.1006/JCTB.2000.2031.
  27. Stephan Kreutzer and Sebastian Ordyniak. Digraph decompositions and monotonicity in digraph searching. Theor. Comput. Sci., 412(35):4688-4703, 2011. URL: https://doi.org/10.1016/j.tcs.2011.05.003.
  28. Andrea S. LaPaugh. Recontamination does not help to search a graph. J. ACM, 40(2):224-245, 1993. URL: https://doi.org/10.1145/151261.151263.
  29. László Lovász. Operations with structures. Acta Mathematica Academiae Scientiarum Hungarica, 18(3):321-328, September 1967. URL: https://doi.org/10.1007/BF02280291.
  30. Fillia Makedon and Ivan Hal Sudborough. On minimizing width in linear layouts. Discret. Appl. Math., 23(3):243-265, 1989. URL: https://doi.org/10.1016/0166-218X(89)90016-4.
  31. Laura Mančinska and David E. Roberson. Quantum isomorphism is equivalent to equality of homomorphism counts from planar graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 661-672, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00067.
  32. Frédéric Mazoit and Nicolas Nisse. Monotonicity of non-deterministic graph searching. Theor. Comput. Sci., 399(3):169-178, 2008. URL: https://doi.org/10.1016/J.TCS.2008.02.036.
  33. Jaroslav Nesetril and Patrice Ossona de Mendez. Tree-depth, subgraph coloring and homomorphism bounds. Eur. J. Comb., 27(6):1022-1041, 2006. URL: https://doi.org/10.1016/J.EJC.2005.01.010.
  34. Daniel Neuen. Homomorphism-Distinguishing Closedness for Graphs of Bounded Tree-Width, April 2023. URL: https://doi.org/10.48550/arXiv.2304.07011.
  35. Jan Obdrzálek. Dag-width: connectivity measure for directed graphs. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 814-821. ACM Press, 2006. URL: http://dl.acm.org/citation.cfm?id=1109557.1109647.
  36. T. D. Parsons. Pursuit-evasion in a graph. In Yousef Alavi and Don R. Lick, editors, Theory and Applications of Graphs, pages 426-441, Berlin, Heidelberg, 1978. Springer Berlin Heidelberg. Google Scholar
  37. Torrence D Parsons. The search number of a connected graph. In Proc. 9th South-Eastern Conf. on Combinatorics, Graph Theory, and Computing, pages 549-554, 1978. Google Scholar
  38. Nikolai N. Petrov. A problem of pursuit in the absence of information on the pursued. Differentsial'nye Uravneniya, 18(1):345-1352, 1982. Google Scholar
  39. David E. Roberson. Oddomorphisms and homomorphism indistinguishability over graphs of bounded degree, June 2022. URL: https://doi.org/10.48550/arXiv.2206.10321.
  40. David E. Roberson and Tim Seppelt. Lasserre Hierarchy for Graph Isomorphism and Homomorphism Indistinguishability. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 101:1-101:18, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2023.101.
  41. Benjamin Scheidt and Nicole Schweikardt. Counting homomorphisms from hypergraphs of bounded generalised hypertree width: A logical characterisation. In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, 48th International Symposium on Mathematical Foundations of Computer Science, MFCS 2023, August 28 to September 1, 2023, Bordeaux, France, volume 272 of LIPIcs, pages 79:1-79:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.MFCS.2023.79.
  42. Tim Seppelt. Logical Equivalences, Homomorphism Indistinguishability, and Forbidden Minors. In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023), volume 272 of Leibniz International Proceedings in Informatics (LIPIcs), pages 82:1-82:15, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.MFCS.2023.82.
  43. Paul D. Seymour and Robin Thomas. Graph searching and a min-max theorem for tree-width. J. Comb. Theory, Ser. B, 58(1):22-33, 1993. URL: https://doi.org/10.1006/JCTB.1993.1027.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail