Twin-Width of Graphs on Surfaces

Authors Daniel Kráľ , Kristýna Pekárková , Kenny Štorgel



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2024.66.pdf
  • Filesize: 0.67 MB
  • 15 pages

Document Identifiers

Author Details

Daniel Kráľ
  • Faculty of Informatics, Masaryk University, Brno, Czech Republic
Kristýna Pekárková
  • Faculty of Informatics, Masaryk University, Brno, Czech Republic
Kenny Štorgel
  • Faculty of Information Studies in Novo mesto, Slovenia

Acknowledgements

The substantial part of the work presented in this article was done during the Brno-Koper research workshop on graph theory topics in computer science held in Kranjska Gora in April 2023, which all three authors have participated in. The authors would like to thank the anonymous reviewers for their numerous constructive comments, which helped to clarify and improve various aspects of the presentation.

Cite AsGet BibTex

Daniel Kráľ, Kristýna Pekárková, and Kenny Štorgel. Twin-Width of Graphs on Surfaces. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 66:1-66:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.MFCS.2024.66

Abstract

Twin-width is a width parameter introduced by Bonnet, Kim, Thomassé and Watrigant [FOCS'20, JACM'22], which has many structural and algorithmic applications. Hliněný and Jedelský [ICALP'23] showed that every planar graph has twin-width at most 8. We prove that the twin-width of every graph embeddable in a surface of Euler genus g is at most 18√{47g} + O(1), which is asymptotically best possible as it asymptotically differs from the lower bound by a constant multiplicative factor. Our proof also yields a quadratic time algorithm to find a corresponding contraction sequence. To prove the upper bound on twin-width of graphs embeddable in surfaces, we provide a stronger version of the Product Structure Theorem for graphs of Euler genus g that asserts that every such graph is a subgraph of the strong product of a path and a graph with a tree-decomposition with all bags of size at most eight with a single exceptional bag of size max{6, 32g-37}.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graphs and surfaces
Keywords
  • twin-width
  • graphs on surfaces
  • fixed parameter tractability

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Jungho Ahn, Debsoumya Chakraborti, Kevin Hendrey, Donggyu Kim, and Sang-il Oum. Twin-width of random graphs, 2022. URL: https://arxiv.org/abs/2212.07880.
  2. Jungho Ahn, Kevin Hendrey, Donggyu Kim, and Sang-il Oum. Bounds for the twin-width of graphs. SIAM Journal on Discrete Mathematics, 36:2352-2366, 2022. Google Scholar
  3. M. Aigner and G.M. Ziegler. Proofs from THE BOOK. Spinger, 2010. Google Scholar
  4. Jakub Balabán and Petr Hliněný. Twin-width is linear in the poset width. In 16th International Symposium on Parameterized and Exact Computation (IPEC), volume 214 of LIPIcs, pages 6:1-6:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. Google Scholar
  5. Michael A. Bekos, Giordano Da Lozzo, Petr Hliněný, and Michael Kaufmann. Graph product structure for h-framed graphs. In 33rd International Symposium on Algorithms and Computation (ISAAC), volume 248 of LIPIcs, pages 23:1-23:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. Google Scholar
  6. Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4 is NP-complete. In 49th International Colloquium on Automata, Languages, and Programming (ICALP), volume 229 of LIPIcs, pages 18:1-18:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2022. Google Scholar
  7. Benjamin Bergougnoux, Jakub Gajarský, Grzegorz Guśpiel, Petr Hliněný, Filip Pokrývka, and Marek Sokołowski. Sparse graphs of twin-width 2 have bounded tree-width, 2023. URL: https://arxiv.org/abs/2307.01732.
  8. Édouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen Köhler, Raul Lopes, and Stéphan Thomassé. Twin-width VIII: Delineation and win-wins. In 17th International Symposium on Parameterized and Exact Computation (IPEC), volume 249 of LIPIcs, pages 9:1-9:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. Google Scholar
  9. Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width II: Small classes. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1977-1996, 2021. Google Scholar
  10. Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width III: Max independent set, min dominating set, and coloring. In 48th International Colloquium on Automata, Languages, and Programming (ICALP), volume 198 of LIPIcs, pages 35:1-35:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. Google Scholar
  11. Édouard Bonnet, Colin Geniet, Romain Tessera, and Stéphan Thomassé. Twin-width VII: Groups, 2022. URL: https://arxiv.org/abs/2204.12330.
  12. Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé, and Szymon Toruńczyk. Twin-width IV: Ordered graphs and matrices. In Proceedings of the 54th Annual ACM Symposium on Theory of Computing (STOC), pages 924-937, 2022. Google Scholar
  13. Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, and Stéphan Thomassé. Twin-Width V: Linear Minors, Modular Counting, and Matrix Multiplication. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023), volume 254 of LIPIcs, pages 15:1-15:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. Google Scholar
  14. Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé. Twin-width VI: The lens of contraction sequences. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1036-1056, 2022. Google Scholar
  15. Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant. Twin-width and polynomial kernels. In 16th International Symposium on Parameterized and Exact Computation (IPEC), volume 214 of LIPIcs, pages 10:1-10:16. 2021. Google Scholar
  16. Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I: Tractable FO model checking. In 61th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 601-612, 2020. Google Scholar
  17. Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I: Tractable FO model checking. Journal of the ACM, 69:3:1-3:46, 2022. Google Scholar
  18. Édouard Bonnet, O-joung Kwon, and David R. Wood. Reduced bandwidth: a qualitative strengthening of twin-width in minor-closed classes (and beyond), 2022. URL: https://arxiv.org/abs/2202.11858.
  19. Édouard Bonnet, Jaroslav Nešetřil, Patrice Ossona de Mendez, Sebastian Siebertz, and Stéphan Thomassé. Twin-width and permutations, 2021. URL: https://arxiv.org/abs/2102.06880.
  20. Édouard Bonnet, Jaroslav Nešetřil, Patrice Ossona de Mendez, Sebastian Siebertz, and Stéphan Thomassé. Twin-width and permutations. In Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB'23), EUROCOMB, pages 156-162, Brno, Czech Republic, 2023. Masaryk University Press. Google Scholar
  21. Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Information and Computation, 85(1):12-75, 1990. Google Scholar
  22. Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125-150, 2000. Google Scholar
  23. Marc Distel, Robert Hickingbotham, Tony Huynh, and David R. Wood. Improved product structure for graphs on surfaces. Discrete Mathematics & Theoretical Computer Science, 24:8877:1-8877:10, 2022. Google Scholar
  24. Jan Dreier, Jakub Gajarský, Yiting Jiang, Patrice Ossona de Mendez, and Jean-Florent Raymond. Twin-width and generalized coloring numbers. Discrete Mathematics, 345(3):112746, 2022. Google Scholar
  25. Vida Dujmović, Louis Esperet, Gwenaël Joret, Bartosz Walczak, and David R. Wood. Planar graphs have bounded nonrepetitive chromatic number. Advances in Combinatorics, pages 5:1-5:11, 2020. Google Scholar
  26. Vida Dujmović, Gwenaël Joret, Piotr Micek, Pat Morin, Torsten Ueckerdt, and David R. Wood. Planar graphs have bounded queue-number. Journal of the ACM, 67(4):22:1-22:38, 2020. Google Scholar
  27. Vida Dujmović, Pat Morin, and David R. Wood. Layered separators in minor-closed graph classes with applications. Journal of Combinatorial Theory, Series B, 127:111-147, 2017. Google Scholar
  28. Vida Dujmović, Gwenaël Joret, Piotr Micek, Pat Morin, Torsten Ueckerdt, and David R. Wood. Planar graphs have bounded queue-number. In 60th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 862-875, 2019. Google Scholar
  29. Zdeněk Dvořák, Tony Huynh, Gwenael Joret, Chun-Hung Liu, and David R. Wood. Notes on graph product structure theory. In 2019-20 MATRIX Annals, volume 4 of MATRIX Book Series, pages 513-533. Springer, 2021. Google Scholar
  30. Zdeněk Dvořák, Daniel Král', and Robin Thomas. Deciding first-order properties for sparse graphs. In 51th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pages 133-142, 2010. Google Scholar
  31. Zdeněk Dvořák, Daniel Král', and Robin Thomas. Testing first-order properties for subclasses of sparse graphs. Journal of the ACM, 60(5):36:1-36:24, 2013. Google Scholar
  32. Markus Frick and Martin Grohe. Deciding first-order properties of locally tree-decomposalbe graphs. In 26th International Colloquium on Automata, Languages, and Programming (ICALP), volume 1644 of Lecture Notes in Computer Science, pages 331-340. Springer, 1999. Google Scholar
  33. Markus Frick and Martin Grohe. Deciding first-order properties of locally tree-decomposable structures. Journal of the ACM, 48(6):1184-1206, 2001. Google Scholar
  34. Jakub Gajarský, Michał Pilipczuk, and Szymon Toruńczyk. Stable graphs of bounded twin-width. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 39:1-39:12. ACM, 2022. Google Scholar
  35. Petr Hliněný. Twin-width of planar graphs is at most 9, and at most 6 when bipartite planar, 2022. URL: https://arxiv.org/abs/2205.05378.
  36. Petr Hliněný. Twin-width of planar graphs; a short proof, 2023. URL: https://arxiv.org/abs/2302.08938.
  37. Petr Hliněný. Twin-width of planar graphs; a short proof. In Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB'23), EUROCOMB, pages 595-600, Brno, Czech Republic, 2023. Masaryk University Press. Google Scholar
  38. Petr Hliněný and Jan Jedelský. Twin-width of planar graphs is at most 8, and at most 6 when bipartite planar. In 50th International Colloquium on Automata, Languages, and Programming (ICALP), volume 261 of LIPIcs, pages 75:1-75:18. 2023. Google Scholar
  39. J. Ivančo. The weight of a graph. Annals of Discrete Mathematics, 51:113-116, 1992. Google Scholar
  40. Hugo Jacob and Marcin Pilipczuk. Bounding twin-width for bounded-treewidth graphs, planar graphs, and bipartite graphs. In Graph-Theoretic Concepts in Computer Science (WG 2022), volume 13453 of LNCS Lecture Notes Ser., pages 287-299. Springer International Publishing, 2022. Google Scholar
  41. Jan Jedelský. Twin-width of planar graphs. Master’s thesis, Masaryk University, 2024. Google Scholar
  42. Daniel Král’ and Ander Lamaison. Planar graph with twin-width seven. European Journal of Combinatorics, pages 103749, 16pp, 2023. Google Scholar
  43. Bojan Mohar. Embedding graphs in an arbitrary surface in linear time. In Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC), pages 392-397. ACM, 1996. Google Scholar
  44. Bojan Mohar. A linear time algorithm for embedding graphs in an arbitrary surface. SIAM Journal on Discrete Mathematics, 12(1):6-26, 1999. Google Scholar
  45. Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Johns Hopkins series in the mathematical sciences. Johns Hopkins University Press, 2001. Google Scholar
  46. William Pettersson and John Sylvester. Bounds on the twin-width of product graphs. Discrete Mathematics & Theoretical Computer Science, 25:1, 2023. Google Scholar
  47. Michał Pilipczuk and Marek Sokołowski. Graphs of bounded twin-width are quasi-polynomially χ-bounded. Journal of Combinatorial Theory, Series B, 161:382-406, 2023. Google Scholar
  48. Michał Pilipczuk, Marek Sokołowski, and Anna Zych-Pawlewicz. Compact representation for matrices of bounded twin-width. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS), volume 219 of LIPIcs, pages 52:1-52:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2022. Google Scholar
  49. Detlef Seese. Linear time computable problems and first-order descriptions. Mathematical Structures in Computer Science, 6(6):505-526, 1996. Google Scholar
  50. E Sperner. Fifty years of further development of a combinatorial lemma. Numerical solution of highly nonlinear problems, pages 183-197, 1980. Google Scholar
  51. Stéphan Thomassé. A brief tour in twin-width. In 49th International Colloquium on Automata, Languages, and Programming (ICALP), volume 229 of LIPIcs, pages 6:1-6:5. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2022. Google Scholar
  52. Torsten Ueckerdt, David R. Wood, and Wendy Yi. An improved planar graph product structure theorem. Electronic Journal of Combinatorics, 29(2), 2022. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail