Point-To-Set Principle and Constructive Dimension Faithfulness

Authors Satyadev Nandakumar , Subin Pulari , Akhil S



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2024.76.pdf
  • Filesize: 0.76 MB
  • 15 pages

Document Identifiers

Author Details

Satyadev Nandakumar
  • Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, India
Subin Pulari
  • Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, India
Akhil S
  • Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, India

Acknowledgements

We gratefully acknowledge the anonymous reviewers for their invaluable insights and constructive feedback, which has significantly strengthened this manuscript.

Cite AsGet BibTex

Satyadev Nandakumar, Subin Pulari, and Akhil S. Point-To-Set Principle and Constructive Dimension Faithfulness. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 76:1-76:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.MFCS.2024.76

Abstract

Hausdorff Φ-dimension is a notion of Hausdorff dimension developed using a restricted class of coverings of a set. We introduce a constructive analogue of Φ-dimension using the notion of constructive Φ-s-supergales. We prove a Point-to-Set Principle for Φ-dimension, through which we get Point-to-Set Principles for Hausdorff dimension, continued-fraction dimension and dimension of Cantor coverings as special cases. We also provide a Kolmogorov complexity characterization of constructive Φ-dimension. A class of covering sets Φ is said to be "faithful" to Hausdorff dimension if the Φ-dimension and Hausdorff dimension coincide for every set. Similarly, Φ is said to be "faithful" to constructive dimension if the constructive Φ-dimension and constructive dimension coincide for every set. Using the Point-to-Set Principle for Cantor coverings and a new technique for the construction of sequences satisfying a certain Kolmogorov complexity condition, we show that the notions of "faithfulness" of Cantor coverings at the Hausdorff and constructive levels are equivalent. We adapt the result by Albeverio, Ivanenko, Lebid, and Torbin [Albeverio et al., 2020] to derive the necessary and sufficient conditions for the constructive dimension faithfulness of the coverings generated by the Cantor series expansion, based on the terms of the expansion.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computability
  • Mathematics of computing → Information theory
Keywords
  • Kolmogorov complexity
  • Constructive dimension
  • Faithfulness
  • Point to set principle
  • Continued fraction dimension
  • Cantor series expansion

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. S. Albeverio, Ganna Ivanenko, Mykola Lebid, and Grygoriy Torbin. On the Hausdorff dimension faithfulness and the Cantor series expansion. Methods of Functional Analysis and Topology, 26(4):298-310, 2020. Google Scholar
  2. Sergio Albeverio and Grygoriy Torbin. Fractal properties of singular probability distributions with independent Q^*-digits. Bull. Sci. Math., 129(4):356-367, 2005. URL: https://doi.org/10.1016/j.bulsci.2004.12.001.
  3. A. S. Besicovitch. On existence of subsets of finite measure of sets of infinite measure. Indag. Math., 14:339-344, 1952. Nederl. Akad. Wetensch. Proc. Ser. A 55. Google Scholar
  4. George Cantor. Uber die einfachen zahlensysteme, zeit. für math. 14 (1869), 121-128. Coll. Papers, Berlin, pages 35-53, 1932. Google Scholar
  5. Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic randomness and complexity. Theory and Applications of Computability. Springer, New York, 2010. URL: https://doi.org/10.1007/978-0-387-68441-3.
  6. Kenneth Falconer. Fractal geometry. John Wiley & Sons, Inc., Hoboken, NJ, second edition, 2003. Mathematical foundations and applications. URL: https://doi.org/10.1002/0470013850.
  7. F. Hausdorff. Dimension und äusseres Mass. Mathematische Annalen, 79:157-179, 1919. Google Scholar
  8. John M. Hitchcock and Elvira Mayordomo. Base invariance of feasible dimension. Inform. Process. Lett., 113(14-16):546-551, 2013. URL: https://doi.org/10.1016/j.ipl.2013.04.004.
  9. M. Kh. Ībragīm and G. M. Torbīn. On a probabilistic approach to the DP-transformations and faithfulness of covering systems for calculating the Hausdorff-Besicovitch dimension. Teor. Ĭmovīr. Mat. Stat., 92:28-40, 2015. URL: https://doi.org/10.1090/tpms/980.
  10. Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and its applications. Texts in Computer Science. Springer, New York, third edition, 2008. URL: https://doi.org/10.1007/978-0-387-49820-1.
  11. J. H. Lutz. Dimensions of individual strings and sequences. Information and Computation, 187(1):49-79, 2003. Google Scholar
  12. Jack H. Lutz. Dimension in complexity classes. SIAM J. Comput., 32(5):1236-1259, 2003. URL: https://doi.org/10.1137/S0097539701417723.
  13. Jack H. Lutz and Neil Lutz. Algorithmic information, plane kakeya sets, and conditional dimension. ACM Trans. Comput. Theory, 10(2):7:1-7:22, 2018. URL: https://doi.org/10.1145/3201783.
  14. Jack H. Lutz and Neil Lutz. Who asked us? how the theory of computing answers questions about analysis. In Ding-Zhu Du and Jie Wang, editors, Complexity and Approximation - In Memory of Ker-I Ko, volume 12000 of Lecture Notes in Computer Science, pages 48-56. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-41672-0_4.
  15. Jack H. Lutz, Neil Lutz, and Elvira Mayordomo. Extending the reach of the point-to-set principle. In Petra Berenbrink and Benjamin Monmege, editors, 39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022, March 15-18, 2022, Marseille, France (Virtual Conference), volume 219 of LIPIcs, pages 48:1-48:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.STACS.2022.48.
  16. Jack H. Lutz and Elvira Mayordomo. Dimensions of points in self-similar fractals. SIAM Journal on Computing, 38:1080-1112, 2008. Google Scholar
  17. Jack H. Lutz and Klaus Weihrauch. Connectivity properties of dimension level sets. MLQ Math. Log. Q., 54(5):483-491, 2008. URL: https://doi.org/10.1002/malq.200710060.
  18. Neil Lutz. Fractal intersections and products via algorithmic dimension. ACM Trans. Comput. Theory, 13(3):Art. 14, 15, 2021. URL: https://doi.org/10.1145/3460948.
  19. Neil Lutz and D. M. Stull. Bounding the dimension of points on a line. Inform. and Comput., 275:104601, 15, 2020. URL: https://doi.org/10.1016/j.ic.2020.104601.
  20. Neil Lutz and Donald M. Stull. Projection theorems using effective dimension. In 43rd International Symposium on Mathematical Foundations of Computer Science, volume 117 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 71, 15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. Google Scholar
  21. Elvira Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff dimension. Inform. Process. Lett., 84(1):1-3, 2002. URL: https://doi.org/10.1016/S0020-0190(02)00343-5.
  22. Elvira Mayordomo. Effective hausdorff dimension in general metric spaces. Theory Comput. Syst., 62(7):1620-1636, 2018. URL: https://doi.org/10.1007/s00224-018-9848-3.
  23. Satyadev Nandakumar. An effective ergodic theorem and some applications. In STOC'08, pages 39-44. ACM, New York, 2008. URL: https://doi.org/10.1145/1374376.1374383.
  24. Satyadev Nandakumar, Akhil S, and Prateek Vishnoi. Effective continued fraction dimension versus effective Hausdorff dimension of reals. In 48th International Symposium on Mathematical Foundations of Computer Science, volume 272 of LIPIcs. Leibniz Int. Proc. Inform., pages Paper No. 70, 15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/lipics.mfcs.2023.70.
  25. Satyadev Nandakumar and Prateek Vishnoi. Randomness and effective dimension of continued fractions. In 45th International Symposium on Mathematical Foundations of Computer Science, volume 170 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 73, 13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. Google Scholar
  26. Satyadev Nandakumar and Prateek Vishnoi. On continued fraction randomness and normality. Information and Computation, 285(part B):104876, 2022. URL: https://doi.org/10.1016/j.ic.2022.104876.
  27. André Nies. Computability and randomness, volume 51. OUP Oxford, 2009. Google Scholar
  28. Yuval Peres and Gyorgiy Torbin. Continued fractions and dimensional gaps. In preparation. Google Scholar
  29. C. A. Rogers. Hausdorff measures. Cambridge University Press, London-New York, 1970. Google Scholar
  30. Alexander Shen, Vladimir A Uspensky, and Nikolay Vereshchagin. Kolmogorov complexity and algorithmic randomness, volume 220. American Mathematical Society, 2022. Google Scholar
  31. Ludwig Staiger. The Kolmogorov complexity of real numbers. Theor. Comput. Sci., 284(2):455-466, 2002. URL: https://doi.org/10.1016/S0304-3975(01)00102-5.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail