An Algorithmic Meta Theorem for Homomorphism Indistinguishability

Author Tim Seppelt



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2024.82.pdf
  • Filesize: 0.91 MB
  • 19 pages

Document Identifiers

Author Details

Tim Seppelt
  • RWTH Aachen University, Germany

Acknowledgements

I would like to thank Martin Grohe and Louis Härtel for fruitful discussions and their support. In particular, I thank Martin Grohe for making me aware of Chinese remaindering.

Cite AsGet BibTex

Tim Seppelt. An Algorithmic Meta Theorem for Homomorphism Indistinguishability. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 82:1-82:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.MFCS.2024.82

Abstract

Two graphs G and H are homomorphism indistinguishable over a family of graphs ℱ if for all graphs F ∈ ℱ the number of homomorphisms from F to G is equal to the number of homomorphism from F to H. Many natural equivalence relations comparing graphs such as (quantum) isomorphism, cospectrality, and logical equivalences can be characterised as homomorphism indistinguishability relations over various graph classes. The wealth of such results motivates a more fundamental study of homomorphism indistinguishability. From a computational perspective, the central object of interest is the decision problem HomInd(ℱ) which asks to determine whether two input graphs G and H are homomorphism indistinguishable over a fixed graph class ℱ. The problem HomInd(ℱ) is known to be decidable only for few graph classes ℱ. Due to a conjecture by Roberson (2022) and results by Seppelt (MFCS 2023), homomorphism indistinguishability relations over minor-closed graph classes are of special interest. We show that HomInd(ℱ) admits a randomised polynomial-time algorithm for every minor-closed graph class ℱ of bounded treewidth. This result extends to a version of HomInd where the graph class ℱ is specified by a sentence in counting monadic second-order logic and a bound k on the treewidth, which are given as input. For fixed k, this problem is randomised fixed-parameter tractable. If k is part of the input, then it is coNP- and coW[1]-hard. Addressing a problem posed by Berkholz (2012), we show coNP-hardness by establishing that deciding indistinguishability under the k-dimensional Weisfeiler-Leman algorithm is coNP-hard when k is part of the input.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Combinatorics
  • Mathematics of computing → Graph theory
  • Theory of computation → Graph algorithms analysis
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • homomorphism indistinguishability
  • graph homomorphism
  • graph minor
  • recognisability
  • randomised algorithm
  • Courcelle’s Theorem

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Samson Abramsky, Tomáš Jakl, and Thomas Paine. Discrete Density Comonads and Graph Parameters. In Helle Hvid Hansen and Fabio Zanasi, editors, Coalgebraic Methods in Computer Science, pages 23-44, Cham, 2022. Springer International Publishing. URL: https://doi.org/10.1007/978-3-031-10736-8_2.
  2. Albert Atserias and Joanna Fijalkow. Definable Ellipsoid Method, Sums-of-Squares Proofs, and the Graph Isomorphism Problem. SIAM Journal on Computing, 52(5):1193-1229, 2023. URL: https://doi.org/10.1137/20M1338435.
  3. Albert Atserias, Phokion G. Kolaitis, and Wei-Lin Wu. On the Expressive Power of Homomorphism Counts. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1-13, 2021. URL: https://doi.org/10.1109/LICS52264.2021.9470543.
  4. Albert Atserias and Elitza Maneva. Sherali-Adams Relaxations and Indistinguishability in Counting Logics. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS '12, pages 367-379, New York, NY, USA, 2012. Association for Computing Machinery. URL: https://doi.org/10.1145/2090236.2090265.
  5. Albert Atserias, Laura Mančinska, David E. Roberson, Robert Šámal, Simone Severini, and Antonios Varvitsiotis. Quantum and non-signalling graph isomorphisms. J. Comb. Theory, Ser. B, 136:289-328, 2019. URL: https://doi.org/10.1016/j.jctb.2018.11.002.
  6. László Babai. Graph Isomorphism in Quasipolynomial Time [Extended Abstract]. In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC '16, pages 684-697, New York, NY, USA, 2016. Association for Computing Machinery. URL: https://doi.org/10.1145/2897518.2897542.
  7. Christoph Berkholz. Lower Bounds for Existential Pebble Games and k-Consistency Tests. In 2012 27th Annual IEEE Symposium on Logic in Computer Science, pages 25-34, Dubrovnik, Croatia, June 2012. IEEE. URL: https://doi.org/10.1109/LICS.2012.14.
  8. Christoph Berkholz, Paul S. Bonsma, and Martin Grohe. Tight Lower and Upper Bounds for the Complexity of Canonical Colour Refinement. Theory Comput. Syst., 60(4):581-614, 2017. URL: https://doi.org/10.1007/s00224-016-9686-0.
  9. Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science, 209(1):1-45, December 1998. URL: https://doi.org/10.1016/S0304-3975(97)00228-4.
  10. Hans L. Bodlaender and Dimitrios M. Thilikos. Treewidth for graphs with small chordality. Discrete Applied Mathematics, 79(1-3):45-61, November 1997. URL: https://doi.org/10.1016/S0166-218X(97)00031-0.
  11. Mikołaj Bojańczyk and Michał Pilipczuk. Definability equals recognizability for graphs of bounded treewidth. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, pages 407-416, New York NY USA, July 2016. ACM. URL: https://doi.org/10.1145/2933575.2934508.
  12. Jan Böker, Yijia Chen, Martin Grohe, and Gaurav Rattan. The Complexity of Homomorphism Indistinguishability. In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen, editors, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019), volume 138 of Leibniz International Proceedings in Informatics (LIPIcs), pages 54:1-54:13, Dagstuhl, Germany, 2019. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.MFCS.2019.54.
  13. Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables for graph identification. Combinatorica, 12(4):389-410, December 1992. URL: https://doi.org/10.1007/BF01305232.
  14. Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation, 85(1):12-75, March 1990. URL: https://doi.org/10.1016/0890-5401(90)90043-H.
  15. Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach. Cambridge University Press, USA, 1st edition, 2012. Google Scholar
  16. Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer International Publishing, Cham, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  17. Víctor Dalmau and Peter Jonsson. The Complexity of Counting Homomorphisms Seen from the Other Side. Theoretical Computer Science, 329(1):315-323, 2004. URL: https://doi.org/10.1016/j.tcs.2004.08.008.
  18. Anuj Dawar, Tomáš Jakl, and Luca Reggio. Lovász-Type Theorems and Game Comonads. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1-13. IEEE, 2021. URL: https://doi.org/10.1109/LICS52264.2021.9470609.
  19. Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász Meets Weisfeiler and Leman. 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018), pages 40:1-40:14, 2018. URL: https://doi.org/10.4230/LIPICS.ICALP.2018.40.
  20. Zdeněk Dvořák. On recognizing graphs by numbers of homomorphisms. Journal of Graph Theory, 64(4):330-342, August 2010. URL: https://doi.org/10.1002/jgt.20461.
  21. John Faben and Mark Jerrum. The Complexity of Parity Graph Homomorphism: An Initial Investigation. Theory of Computing, 11(2):35-57, 2015. URL: https://doi.org/10.4086/toc.2015.v011a002.
  22. Eva Fluck, Tim Seppelt, and Gian Luca Spitzer. Going Deep and Going Wide: Counting Logic and Homomorphism Indistinguishability over Graphs of Bounded Treedepth and Treewidth. In Aniello Murano and Alexandra Silva, editors, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024), volume 288 of Leibniz International Proceedings in Informatics (LIPIcs), pages 27:1-27:17, Dagstuhl, Germany, 2024. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.CSL.2024.27.
  23. Martin Grohe. Equivalence in Finite-Variable Logics is Complete for Polynomial Time. Combinatorica, 19(4):507-532, October 1999. URL: https://doi.org/10.1007/s004939970004.
  24. Martin Grohe. Counting Bounded Tree Depth Homomorphisms. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '20, pages 507-520, New York, NY, USA, 2020. Association for Computing Machinery. URL: https://doi.org/10.1145/3373718.3394739.
  25. Martin Grohe. The Logic of Graph Neural Networks. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1-17. IEEE, 2021. URL: https://doi.org/10.1109/LICS52264.2021.9470677.
  26. Martin Grohe, Moritz Lichter, Daniel Neuen, and Pascal Schweitzer. Compressing CFI Graphs and Lower Bounds for the Weisfeiler-Leman Refinements. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 798-809. IEEE, 2023. URL: https://doi.org/10.1109/FOCS57990.2023.00052.
  27. Martin Grohe and Martin Otto. Pebble Games and Linear Equations. The Journal of Symbolic Logic, 80(3):797-844, 2015. URL: https://doi.org/10.1017/jsl.2015.28.
  28. Martin Grohe, Gaurav Rattan, and Tim Seppelt. Homomorphism Tensors and Linear Equations. In Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229 of Leibniz International Proceedings in Informatics (LIPIcs), pages 70:1-70:20, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2022.70.
  29. Neil Immerman and Eric Lander. Describing Graphs: A First-Order Approach to Graph Canonization. In Alan L. Selman, editor, Complexity Theory Retrospective: In Honor of Juris Hartmanis on the Occasion of His Sixtieth Birthday, July 5, 1988, pages 59-81. Springer New York, New York, NY, 1990. URL: https://doi.org/10.1007/978-1-4612-4478-3_5.
  30. Moritz Lichter, Benedikt Pago, and Tim Seppelt. Limitations of Game Comonads for Invertible-Map Equivalence via Homomorphism Indistinguishability. In Aniello Murano and Alexandra Silva, editors, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024), volume 288 of Leibniz International Proceedings in Informatics (LIPIcs), pages 36:1-36:19, Dagstuhl, Germany, 2024. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.CSL.2024.36.
  31. Moritz Lichter, Simon Raßmann, and Pascal Schweitzer. Computational complexity of the Weisfeiler-Leman dimension. CoRR, abs/2402.11531, 2024. URL: https://doi.org/10.48550/arXiv.2402.11531.
  32. László Lovász. Operations with structures. Acta Mathematica Academiae Scientiarum Hungarica, 18(3):321-328, September 1967. URL: https://doi.org/10.1007/BF02280291.
  33. László Lovász. Large networks and graph limits. Number volume 60 in American Mathematical Society colloquium publications. American Mathematical Society, Providence, Rhode Island, 2012. Google Scholar
  34. Laura Mančinska and David E. Roberson. Quantum isomorphism is equivalent to equality of homomorphism counts from planar graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 661-672, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00067.
  35. Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 33:4602-4609, July 2019. URL: https://doi.org/10.1609/aaai.v33i01.33014602.
  36. Daniel Neuen. Homomorphism-Distinguishing Closedness for Graphs of Bounded Tree-Width. In Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov, editors, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024), volume 289 of Leibniz International Proceedings in Informatics (LIPIcs), pages 53:1-53:12, Dagstuhl, Germany, 2024. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.STACS.2024.53.
  37. David E. Roberson. Oddomorphisms and homomorphism indistinguishability over graphs of bounded degree, June 2022. URL: http://arxiv.org/abs/2206.10321.
  38. David E. Roberson and Tim Seppelt. Lasserre Hierarchy for Graph Isomorphism and Homomorphism Indistinguishability. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 101:1-101:18, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2023.101.
  39. Neil Robertson and P.D Seymour. Graph minors. V. Excluding a planar graph. Journal of Combinatorial Theory, Series B, 41(1):92-114, 1986. URL: https://doi.org/10.1016/0095-8956(86)90030-4.
  40. Tim Seppelt. Logical Equivalences, Homomorphism Indistinguishability, and Forbidden Minors. In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023), volume 272 of Leibniz International Proceedings in Informatics (LIPIcs), pages 82:1-82:15, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.MFCS.2023.82.
  41. Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural Networks? In International Conference on Learning Representations, 2018. URL: https://openreview.net/forum?id=ryGs6iA5Km.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail