The low-rank matrix completion problem asks whether a given real matrix with missing values can be completed so that the resulting matrix has low rank or is close to a low-rank matrix. The completed matrix is often required to satisfy additional structural constraints, such as positive semi-definiteness or a bounded infinity norm. The problem arises in various research fields, including machine learning, statistics, and theoretical computer science, and has broad real-world applications. This paper presents new NP-hardness results for low-rank matrix completion problems. We show that for every sufficiently large integer d and any real number ε ∈ [2^{-O(d)},1/7], given a partial matrix A with exposed values of magnitude at most 1 that admits a positive semi-definite completion of rank d, it is NP-hard to find a positive semi-definite matrix that agrees with each given value of A up to an additive error of at most ε, even when the rank is allowed to exceed d by a multiplicative factor of O (1/(ε²⋅log(1/ε))). This strengthens a result of Hardt, Meka, Raghavendra, and Weitz (COLT, 2014), which applies to multiplicative factors smaller than 2 and to ε that decays polynomially in d. We establish similar NP-hardness results for the case where the completed matrix is constrained to have a bounded infinity norm (rather than be positive semi-definite), for which all previous hardness results rely on complexity assumptions related to the Unique Games Conjecture. Our proofs involve a novel notion of nearly orthonormal representations of graphs, the concept of line digraphs, and bounds on the rank of perturbed identity matrices.
@InProceedings{chawin_et_al:LIPIcs.MFCS.2025.37, author = {Chawin, Dror and Haviv, Ishay}, title = {{New Hardness Results for Low-Rank Matrix Completion}}, booktitle = {50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)}, pages = {37:1--37:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-388-1}, ISSN = {1868-8969}, year = {2025}, volume = {345}, editor = {Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.37}, URN = {urn:nbn:de:0030-drops-241448}, doi = {10.4230/LIPIcs.MFCS.2025.37}, annote = {Keywords: hardness of approximation, low-rank matrix completion, graph coloring} }
Feedback for Dagstuhl Publishing