Regular transductions over finite words have linear input-to-output growth. This class of transductions enjoys many characterizations, such as transductions computable by two-way transducers as well as transductions definable in MSO (in the sense of Courcelle). Recently, regular transductions have been extended by Bojańczyk to polyregular transductions, which have polynomial growth, and are characterized by pebble transducers and MSO interpretations. Another class of interest is that of transductions defined by streaming string transducers or marble transducers, which have exponential growth and are incomparable with polyregular transductions. In this paper, we consider MSO set interpretations (MSOSI) over finite words, that were introduced by Colcombet and Loeding. MSOSI are a natural candidate for the class of "regular transductions with exponential growth", and are rather well behaved. However, MSOSI for now lacks two desirable properties that regular and polyregular transductions have. The first property is to have an automata description. This property is closely related to a second property, that of being regularity preserving, meaning preserving regular languages under inverse image. We first show that if MSOSI are (effectively) regularity preserving then any automatic ω-word has a decidable MSO theory, an almost 20 years old conjecture of Bárány. Our main contribution is the introduction of a class of transductions of exponential growth, which we call lexicographic transductions. We provide three different presentations for this class: first, as the closure of simple transductions (recognizable transductions) under a single operator called maplex; second, as a syntactic fragment of MSOSI (but the regular languages are given by automata instead of formulas); and third, we give an automaton based model called nested marble transducers, which generalize both marble transducers and pebble transducers. We show that this class enjoys many nice properties including being regularity preserving.
@InProceedings{filiot_et_al:LIPIcs.MFCS.2025.50, author = {Filiot, Emmanuel and Lhote, Nathan and Reynier, Pierre-Alain}, title = {{Lexicographic Transductions of Finite Words}}, booktitle = {50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)}, pages = {50:1--50:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-388-1}, ISSN = {1868-8969}, year = {2025}, volume = {345}, editor = {Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.50}, URN = {urn:nbn:de:0030-drops-241572}, doi = {10.4230/LIPIcs.MFCS.2025.50}, annote = {Keywords: Transducers, Automata, MSO, Logical interpretations, Automatic structures} }
Feedback for Dagstuhl Publishing