We investigate quantum relaxations of two key decision problems in computer science: the constraint satisfaction problem (CSP) and the structure isomorphism problem. CSP asks whether a homomorphism exists between two relational structures, while structure isomorphism seeks an isomorphism between them. In recent years, it has become increasingly apparent that many special cases of CSP can be reformulated in terms of the existence of perfect classical strategies in non-local games, a key topic of study in quantum information theory. These games have allowed us to study quantum advantage in relation to many important decision problems, such as the k-colouring problem, and the problem of solving binary constraint systems. Abramsky et al. (2017) have shown that all of these games can be seen as special instances of a non-local CSP game. Moreover, they show that perfect quantum strategies in this CSP game can be viewed as Kleisli morphisms of a graded monad on the category of relational structures, which they dub the quantum monad. In this way, the quantum monad provides a categorical characterisation of quantum advantage for the non-local CSP game. In this work we solidify and expand the results of Abramsky et al., answering several of their open questions. Firstly, we compare the definition of quantum graph homomorphisms arising from this work with an earlier definition of the concept due to Mančinska and Roberson and show that there are graphs which exhibit quantum advantage under one definition but not the other. Our second contribution is to extend the results of Abramsky et al. which only hold in the tensor product framework of quantum mechanics to the commuting operator framework. Next, we study a non-local structure isomorphism game, which generalises the well-studied graph isomorphism game. We show how the construction of the quantum monad can be refined to provide categorical semantics for quantum strategies in this game. This results in a category where morphisms coincide with quantum homomorphisms and isomorphisms coincide with quantum isomorphisms.
@InProceedings{karamlou:LIPIcs.MFCS.2025.61, author = {Karamlou, Amin}, title = {{Quantum Relaxations of CSP and Structure Isomorphism}}, booktitle = {50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)}, pages = {61:1--61:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-388-1}, ISSN = {1868-8969}, year = {2025}, volume = {345}, editor = {Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.61}, URN = {urn:nbn:de:0030-drops-241686}, doi = {10.4230/LIPIcs.MFCS.2025.61}, annote = {Keywords: CSP, graph isomorphism, quantum information, non-local game, quantum graph homomorphism, monad} }
Feedback for Dagstuhl Publishing