Silent Programmable Matter: Coating

Authors Alfredo Navarra , Francesco Piselli



PDF
Thumbnail PDF

File

LIPIcs.OPODIS.2023.25.pdf
  • Filesize: 1.47 MB
  • 17 pages

Document Identifiers

Author Details

Alfredo Navarra
  • Department of Mathematics and Computer Science, University of Perugia, Italy
Francesco Piselli
  • Department of Mathematics and Computer Science, University of Perugia, Italy

Cite AsGet BibTex

Alfredo Navarra and Francesco Piselli. Silent Programmable Matter: Coating. In 27th International Conference on Principles of Distributed Systems (OPODIS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 286, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.OPODIS.2023.25

Abstract

By Programmable Matter (PM) is usually meant a system of weak and self-organizing computational entities, called particles, which can be programmed via distributed algorithms to collectively achieve some global tasks. We consider the SILBOT model where particles are modeled as finite state automata, living and operating in the cells of a hexagonal grid. Particles are all identical, executing the same deterministic algorithm which is based on local observation of the surroundings, up to two hops. Particles are asynchronous, without any direct means of communication and disoriented but sharing a common handedness, i.e., chirality is assumed. Within such a basic model, we consider a foundational primitive for PM, that is Coating: a set of n particles must move so as to ensure the closed surrounding of an object occupying some connected cells of the grid. We present an optimal deterministic distributed algorithm - along with the correctness proof, that in Θ(n²) rounds solves the Coating problem, where a round concerns the minimal time window within which each particle is activated at least once.

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed algorithms
  • Theory of computation → Concurrency
  • Theory of computation → Self-organization
Keywords
  • Programmable Matter
  • Coating
  • Asynchrony
  • Stigmergy

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Hossein Ahmadzadeh, Ellips Masehian, and Masoud Asadpour. Modular robotic systems: Characteristics and applications. J. Intell. Robotic Syst., 81(3-4):317-357, 2016. URL: https://doi.org/10.1007/S10846-015-0237-8.
  2. Rida A. Bazzi and Joseph L. Briones. Deterministic leader election in self-organizing particle systems. In Proceedings of the 21st International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), volume 11914. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-34992-9_3.
  3. Ahmad Reza Cheraghi and Kalman Graffi. A leader based coating algorithm for simple and cave shaped objects with robot swarms. In 5th Asia-Pacific Conference on Intelligent Robot Systems, ACIRS 2020, Singapore, July 17-19, 2020, pages 43-51. IEEE, 2020. URL: https://doi.org/10.1109/ACIRS49895.2020.9162610.
  4. Ahmad Reza Cheraghi, Gorden Wunderlich, and Kalman Graffi. General coating of arbitrary objects using robot swarms. In 5th Asia-Pacific Conference on Intelligent Robot Systems, ACIRS 2020, Singapore, July 17-19, 2020, pages 59-67. IEEE, 2020. URL: https://doi.org/10.1109/ACIRS49895.2020.9162617.
  5. Anders Lyhne Christensen. Self-Reconfigurable Robots - An Introduction. Artif. Life, 18(2):237-240, 2012. URL: https://doi.org/10.1162/ARTL_R_00061.
  6. Serafino Cicerone, Alessia Di Fonso, Gabriele Di Stefano, and Alfredo Navarra. MOBLOT: molecular oblivious robots. In Frank Dignum, Alessio Lomuscio, Ulle Endriss, and Ann Nowé, editors, AAMAS '21: 20th International Conference on Autonomous Agents and Multiagent Systems, Virtual Event, United Kingdom, May 3-7, 2021, pages 350-358. ACM, 2021. URL: https://doi.org/10.5555/3463952.3463998.
  7. Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. Gathering of robots on meeting-points: feasibility and optimal resolution algorithms. Distributed Computing, 31(1):1-50, 2018. URL: https://doi.org/10.1007/S00446-017-0293-3.
  8. Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. Asynchronous arbitrary pattern formation: the effects of a rigorous approach. Distributed Computing, 32(2):91-132, 2019. URL: https://doi.org/10.1007/S00446-018-0325-7.
  9. Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. Embedded pattern formation by asynchronous robots without chirality. Distributed Computing, 32(4):291-315, 2019. URL: https://doi.org/10.1007/S00446-018-0333-7.
  10. Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. "Semi-Asynchronous": a new scheduler in distributed computing. IEEE Access, 9, 2021. URL: https://ieeexplore.ieee.org/document/9373406, URL: https://doi.org/10.1109/ACCESS.2021.3064880.
  11. Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. Solving the pattern formation by mobile robots with chirality. IEEE Access, 9:88177-88204, 2021. URL: https://doi.org/10.1109/ACCESS.2021.3089081.
  12. Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. A structured methodology for designing distributed algorithms for mobile entities. Information Sciences, 574:111-132, 2021. URL: https://doi.org/10.1016/J.INS.2021.05.043.
  13. Serafino Cicerone, Alessia Di Fonso, Gabriele Di Stefano, and Alfredo Navarra. Molecular oblivious robots: A new model for robots with assembling capabilities. IEEE Access, 11:15701-15724, 2023. URL: https://doi.org/10.1109/ACCESS.2023.3244844.
  14. Sonia Contera. Nano Comes to Life: How Nanotechnology Is Transforming Medicine and the Future of Biology. Princeton University Press, 2019. Google Scholar
  15. Gianlorenzo D'Angelo, Mattia D'Emidio, Shantanu Das, Alfredo Navarra, and Giuseppe Prencipe. Asynchronous silent programmable matter achieves leader election and compaction. IEEE Access, 8:207619-207634, 2020. URL: https://doi.org/10.1109/ACCESS.2020.3038174.
  16. Gianlorenzo D'Angelo, Mattia D'Emidio, Shantanu Das, Alfredo Navarra, and Giuseppe Prencipe. Leader election and compaction for asynchronous silent programmable matter. In Proc. 19th Int.'l Conf. on Autonomous Agents and Multiagent Systems (AAMAS), pages 276-284. International Foundation for Autonomous Agents and Multiagent Systems, 2020. URL: https://doi.org/10.5555/3398761.3398798.
  17. Gianlorenzo D'Angelo, Gabriele Di Stefano, and Alfredo Navarra. Gathering on rings under the look-compute-move model. Distributed Computing, 27(4):255-285, 2014. URL: https://doi.org/10.1007/S00446-014-0212-9.
  18. Gianlorenzo D'Angelo, Gabriele Di Stefano, Alfredo Navarra, Nicolas Nisse, and Karol Suchan. Computing on rings by oblivious robots: A unified approach for different tasks. Algorithmica, 72(4):1055-1096, 2015. URL: https://doi.org/10.1007/S00453-014-9892-6.
  19. Gianlorenzo D'Angelo, Alfredo Navarra, and Nicolas Nisse. A unified approach for gathering and exclusive searching on rings under weak assumptions. Distributed Computing, 30(1):17-48, 2017. URL: https://doi.org/10.1007/S00446-016-0274-Y.
  20. Joshua J. Daymude, Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter, Andréa W. Richa, Christian Scheideler, and Thim Strothmann. On the runtime of universal coating for programmable matter. Natural Computing, 17(1):81-96, 2018. URL: https://doi.org/10.1007/S11047-017-9658-6.
  21. Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler. The canonical amoebot model: algorithms and concurrency control. Distributed Comput., 36(2):159-192, 2023. URL: https://doi.org/10.1007/S00446-023-00443-3.
  22. Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim Strothmann. Brief announcement: amoebot - a new model for programmable matter. In Proc. 26th ACM Symp. on Parallelism in Algorithms and Architectures, (SPAA), pages 220-222. ACM, 2014. URL: https://doi.org/10.1145/2612669.2612712.
  23. Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim Strothmann. Universal coating for programmable matter. Theor. Comput. Sci., 671:56-68, 2017. URL: https://doi.org/10.1016/J.TCS.2016.02.039.
  24. Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida A. Bazzi, Andréa W. Richa, and Christian Scheideler. Leader election and shape formation with self-organizing programmable matter. In Proceedings of 21st International Conf. on DNA Computing and Molecular Programming (DNA), volume 9211, pages 117-132. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21999-8_8.
  25. Toshio Fukuda and Yoshio Kawauchi. Cellular robotic system (CEBOT) as one of the realization of self-organizing intelligent universal manipulator. In Proc. of the 1990 IEEE Int.'l Conf. on Robotics and Automation, Cincinnati, Ohio, USA, May 13-18, 1990, pages 662-667. IEEE, 1990. URL: https://doi.org/10.1109/ROBOT.1990.126059.
  26. Yonghwan Kim, Yoshiaki Katayama, and Koichi Wada. Pairbot: A novel model for autonomous mobile robot systems consisting of paired robots. CoRR, abs/2009.14426, 2020. URL: https://arxiv.org/abs/2009.14426.
  27. David G. Kirkpatrick, Irina Kostitsyna, Alfredo Navarra, Giuseppe Prencipe, and Nicola Santoro. Separating bounded and unbounded asynchrony for autonomous robots: Point convergence with limited visibility. In ACM Symposium on Principles of Distributed Computing (PODC), pages 9-19. ACM, 2021. URL: https://doi.org/10.1145/3465084.3467910.
  28. Ralf Klasing, Adrian Kosowski, and Alfredo Navarra. Taking advantage of symmetries: Gathering of many asynchronous oblivious robots on a ring. Theor. Comput. Sci., 411:3235-3246, 2010. URL: https://doi.org/10.1016/J.TCS.2010.05.020.
  29. Irina Kostitsyna, David Liedtke, and Christian Scheideler. Universal Coating in the 3D Hybrid Model, 2023. URL: https://arxiv.org/abs/2303.16180.
  30. Alfredo Navarra and Francesco Piselli. Brief announcement: Line formation in silent programmable matter. In Proc. 37th Int.'l Symp. on Distributed Computing (DISC), volume 281 of LIPIcs, pages 45:1-45:8, 2023. URL: https://doi.org/10.4230/LIPICS.DISC.2023.45.
  31. Alfredo Navarra and Francesco Piselli. Asynchronous silent programmable matter: Line formation. In Proc. 25th Int.'l Symp. on Stabilization, Safety, and Security of Distributed Systems (SSS), volume 14310 of LNCS, pages 598-612, 2023. URL: https://doi.org/10.1007/978-3-031-44274-2_44.
  32. Alfredo Navarra, Giuseppe Prencipe, Samuele Bonini, and Mirco Tracolli. Scattering with programmable matter. In Proceedings of 37th International Conf. on Advanced Information Networking and Applications (AINA), Advances in Intelligent Systems and Computing, pages 236-247. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-29056-5_22.
  33. Benoît Piranda and Julien Bourgeois. Designing a quasi-spherical module for a huge modular robot to create programmable matter. Auton. Robots, 42(8):1619-1633, 2018. URL: https://doi.org/10.1007/S10514-018-9710-0.
  34. Madhuri Sharon, Angelica SL Rodriguez, Chetna Sharon, and Pio Sifuentes Gallardo. Nanotechnology in the Defense Industry: Advances, Innovation, and Practical Applications. John Wiley & Sons, 2019. Google Scholar
  35. Pierre Thalamy, Benoît Piranda, and Julien Bourgeois. Engineering efficient and massively parallel 3d self-reconfiguration using sandboxing, scaffolding and coating. Robotics Auton. Syst., 146:103875, 2021. URL: https://doi.org/10.1016/J.ROBOT.2021.103875.
  36. Tommaso Toffoli and Norman Margolus. Programmable matter: Concepts and realization. Physica D: Nonlinear Phenomena, 47(1):263-272, 1991. URL: https://doi.org/10.1016/0167-2789(91)90296-L.
  37. Thadeu Tucci, Benoît Piranda, and Julien Bourgeois. A distributed self-assembly planning algorithm for modular robots. In Elisabeth André, Sven Koenig, Mehdi Dastani, and Gita Sukthankar, editors, Proc. of the 17th Int.'l Conf. on Autonomous Agents and MultiAgent Systems (AAMAS), pages 550-558. International Foundation for Autonomous Agents and Multiagent Systems Richland, SC, USA / ACM, 2018. URL: http://dl.acm.org/citation.cfm?id=3237465.
  38. Mark Yim, Wei min Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hod Lipson, Eric Klavins, and Gregory S. Chirikjian. Modular self-reconfigurable robot systems [Grand Challenges of Robotics]. IEEE Robotics Automation Magazine, 14:43-52, 2007. URL: https://doi.org/10.1109/MRA.2007.339623.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail