A Tight Bound on Multiple Spending in Decentralized Cryptocurrencies

Authors João Paulo Bezerra , Petr Kuznetsov

Thumbnail PDF


  • Filesize: 0.84 MB
  • 19 pages

Document Identifiers

Author Details

João Paulo Bezerra
  • Télécom Paris, Institut Polytechnique de Paris, France
Petr Kuznetsov
  • Télécom Paris, Institut Polytechnique de Paris, France


This work was supported by TrustShare Innovation Chair.

Cite AsGet BibTex

João Paulo Bezerra and Petr Kuznetsov. A Tight Bound on Multiple Spending in Decentralized Cryptocurrencies. In 27th International Conference on Principles of Distributed Systems (OPODIS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 286, pp. 31:1-31:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


The last decade has seen a variety of Asset-Transfer systems designed for decentralized environments. The major problem these systems address is double-spending, and solving it inherently imposes strong trust assumptions on the system participants. In this paper, we take a non-orthodox approach to the double-spending problem that might suit better realistic environments in which these systems are to be deployed. We consider the decentralized trust setting, where each user may independently choose who to trust by forming their local quorums. In this setting, we define k-Spending Asset Transfer, a relaxed version of asset transfer which bounds the number of times a system participant may spend an asset it received. We establish a precise relationship between the decentralized trust assumptions and k, the optimal spending number of the system.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
  • Quorum systems
  • decentralized trust
  • consistency measure
  • asset transfer
  • accountability


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Marcos Kawazoe Aguilera, Idit Keidar, Dahlia Malkhi, and Alexander Shraer. Dynamic atomic storage without consensus. J. ACM, 58(2):7:1-7:32, 2011. URL: https://doi.org/10.1145/1944345.1944348.
  2. Orestis Alpos, Christian Cachin, and Luca Zanolini. How to trust strangers: Composition of byzantine quorum systems. In 2021 40th International Symposium on Reliable Distributed Systems (SRDS), pages 120-131. IEEE, 2021. URL: https://doi.org/10.1109/SRDS53918.2021.00021.
  3. Frederik Armknecht, Ghassan O Karame, Avikarsha Mandal, Franck Youssef, and Erik Zenner. Ripple: Overview and outlook. In International Conference on Trust and Trustworthy Computing, pages 163-180. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-22846-4_10.
  4. Mathieu Baudet, George Danezis, and Alberto Sonnino. Fastpay: High-performance byzantine fault tolerant settlement. In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies, pages 163-177, 2020. URL: https://doi.org/10.1145/3419614.3423249.
  5. João Paulo Bezerra, Petr Kuznetsov, and Alice Koroleva. Relaxed reliable broadcast for decentralized trust. In International Conference on Networked Systems, 2022. Google Scholar
  6. Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation, 75(2):130-143, 1987. URL: https://doi.org/10.1016/0890-5401(87)90054-X.
  7. Gabriel Bracha and Sam Toueg. Resilient consensus protocols. In Proceedings of the second annual ACM symposium on Principles of distributed computing, pages 12-26, 1983. URL: https://doi.org/10.1145/800221.806706.
  8. Christian Cachin. Asymmetric distributed trust. In International Conference on Distributed Computing and Networking 2021, pages 3-3, 2021. URL: https://doi.org/10.1145/3427796.3433933.
  9. Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. Introduction to reliable and secure distributed programming. Springer Science & Business Media, 2011. URL: https://doi.org/10.1007/978-3-642-15260-3.
  10. Christian Cachin, Giuliano Losa, and Luca Zanolini. Quorum systems in permissionless networks. In OPODIS, 2022. URL: https://doi.org/10.4230/LIPICS.OPODIS.2022.17.
  11. Christian Cachin and Björn Tackmann. Asymmetric distributed trust. In OPODIS, volume 153, pages 7:1-7:16, 2019. URL: https://doi.org/10.4230/LIPICS.OPODIS.2019.7.
  12. Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI: Symposium on Operating Systems Design and Implementation. USENIX Association, Co-sponsored by IEEE TCOS and ACM SIGOPS, feb 1999. Google Scholar
  13. Brad Chase and Ethan MacBrough. Analysis of the xrp ledger consensus protocol. arXiv preprint, 2018. URL: https://arxiv.org/abs/1802.07242.
  14. Pierre Civit, Seth Gilbert, and Vincent Gramoli. Polygraph: Accountable byzantine agreement. IACR Cryptol. ePrint Arch., 2019:587, 2019. URL: https://eprint.iacr.org/2019/587.
  15. Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, Yvonne Anne Pignolet, Dragos-Adrian Seredinschi, Andrei Tonkikh, and Athanasios Xygkis. Online payments by merely broadcasting messages. In 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2020, Valencia, Spain, June 29 - July 2, 2020, pages 26-38. IEEE, 2020. URL: https://doi.org/10.1109/DSN48063.2020.00023.
  16. Ivan Damgård, Yvo Desmedt, Matthias Fitzi, and Jesper Buus Nielsen. Secure protocols with asymmetric trust. In International Conference on the Theory and Application of Cryptology and Information Security, pages 357-375. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-76900-2_22.
  17. Luciano Freitas de Souza, Petr Kuznetsov, Thibault Rieutord, and Sara Tucci Piergiovanni. Accountability and reconfiguration: Self-healing lattice agreement. CoRR, abs/2105.04909, 2021. URL: https://arxiv.org/abs/2105.04909.
  18. Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed consensus with one faulty process. Journal of the ACM (JACM), 32(2):374-382, 1985. URL: https://doi.org/10.1145/3149.214121.
  19. Álvaro García-Pérez and Alexey Gotsman. Federated byzantine quorum systems (extended version). arXiv preprint, 2018. URL: https://arxiv.org/abs/1811.03642.
  20. Álvaro García-Pérez and Maria A Schett. Deconstructing stellar consensus (extended version). arXiv preprint, 2019. URL: https://arxiv.org/abs/1911.05145.
  21. Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael K. Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. SBFT: A scalable and decentralized trust infrastructure. In DSN, pages 568-580. IEEE, 2019. URL: https://doi.org/10.1109/DSN.2019.00063.
  22. Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, and Dragos-Adrian Seredinschi. The consensus number of a cryptocurrency. In Peter Robinson and Faith Ellen, editors, PODC, pages 307-316. ACM, 2019. URL: https://doi.org/10.1145/3293611.3331589.
  23. Saurabh Gupta. A non-consensus based decentralized financial transaction processing model with support for efficient auditing. Arizona State University, 2016. Google Scholar
  24. Andreas Haeberlen and Petr Kuznetsov. The Fault Detection Problem. In Proceedings of the 13th International Conference on Principles of Distributed Systems (OPODIS'09), dec 2009. URL: https://doi.org/10.1007/978-3-642-10877-8_10.
  25. Andreas Haeberlen, Petr Kuznetsov, and Peter Druschel. The case for byzantine fault detection. In Proceedings of the Second Workshop on Hot Topics in System Dependability (HotDep'06), nov 2006. URL: https://www.usenix.org/conference/hotdep-06/case-byzantine-fault-detection.
  26. Andreas Haeberlen, Petr Kuznetsov, and Peter Druschel. PeerReview: Practical accountability for distributed systems. In Proceedings of the 21st ACM Symposium on Operating Systems Principles (SOSP'07), oct 2007. URL: https://doi.org/10.1145/1294261.1294279.
  27. Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine agreement. In Annual International Cryptology Conference, pages 445-462. Springer, 2006. URL: https://doi.org/10.1007/11818175_27.
  28. Ramakrishna Kotla, Lorenzo Alvisi, Michael Dahlin, Allen Clement, and Edmund L. Wong. Zyzzyva: Speculative byzantine fault tolerance. ACM Trans. Comput. Syst., 27(4):7:1-7:39, 2009. URL: https://doi.org/10.1145/1658357.1658358.
  29. Petr Kuznetsov, Thibault Rieutord, and Sara Tucci Piergiovanni. Reconfigurable lattice agreement and applications. In OPODIS, volume 153 of LIPIcs, pages 31:1-31:17, 2019. URL: https://doi.org/10.4230/LIPICS.OPODIS.2019.31.
  30. Petr Kuznetsov and Andrei Tonkikh. Asynchronous reconfiguration with byzantine failures. In Hagit Attiya, editor, DISC, volume 179 of LIPIcs, pages 27:1-27:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPICS.DISC.2020.27.
  31. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM, 21(7):558-565, jul 1978. URL: https://doi.org/10.1145/359545.359563.
  32. Giuliano Losa, Eli Gafni, and David Mazières. Stellar consensus by instantiation. In 33rd International Symposium on Distributed Computing (DISC 2019). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPICS.DISC.2019.27.
  33. Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed computing, 11(4):203-213, 1998. URL: https://doi.org/10.1007/S004460050050.
  34. David Mazieres. The stellar consensus protocol: A federated model for internet-level consensus. Stellar Development Foundation, 32, 2015. Google Scholar
  35. R Miller. Complexity of Computer Computations: Proceedings of a symposium on the Complexity of Computer Computations, held March 20 22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, and sponsored by the Office of Naval Research, Mathematics Program, IBM World Trade Corporation, and the IBM Research Mathematical Sciences Department. Springer Science & Business Media, 2013. URL: https://doi.org/10.1007/978-1-4684-2001-2.
  36. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review, page 21260, 2008. Google Scholar
  37. David Schwartz, Noah Youngs, Arthur Britto, et al. The ripple protocol consensus algorithm. Ripple Labs Inc White Paper, 5(8):151, 2014. Google Scholar
  38. Isaac C. Sheff, Xinwen Wang, Robbert van Renesse, and Andrew C. Myers. Heterogeneous paxos: Technical report. In OPODIS, 2020. URL: https://doi.org/10.4230/LIPIcs.OPODIS.2020.5.
  39. Robert Endre Tarjan and Anthony E Trojanowski. Finding a maximum independent set. SIAM Journal on Computing, 6(3):537-546, 1977. URL: https://doi.org/10.1137/0206038.
  40. Marko Vukolić et al. The origin of quorum systems. Bulletin of EATCS, 2(101), 2013. URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/183.
  41. Gavin Wood. Ethereum: A secure decentralized generalized transaction ledger. White paper, 2015. Google Scholar
  42. Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham. Hotstuff: BFT consensus with linearity and responsiveness. In PODC, pages 347-356. ACM, 2019. URL: https://doi.org/10.1145/3293611.3331591.