A Fair and Resilient Decentralized Clock Network for Transaction Ordering

Authors Andrei Constantinescu , Diana Ghinea , Lioba Heimbach , Zilin Wang, Roger Wattenhofer



PDF
Thumbnail PDF

File

LIPIcs.OPODIS.2023.8.pdf
  • Filesize: 1.02 MB
  • 20 pages

Document Identifiers

Author Details

Andrei Constantinescu
  • ETH Zürich, Switzerland
Diana Ghinea
  • ETH Zürich, Switzerland
Lioba Heimbach
  • ETH Zürich, Switzerland
Zilin Wang
  • ETH Zürich, Switzerland
Roger Wattenhofer
  • ETH Zürich, Switzerland

Cite AsGet BibTex

Andrei Constantinescu, Diana Ghinea, Lioba Heimbach, Zilin Wang, and Roger Wattenhofer. A Fair and Resilient Decentralized Clock Network for Transaction Ordering. In 27th International Conference on Principles of Distributed Systems (OPODIS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 286, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.OPODIS.2023.8

Abstract

Traditional blockchain design gives miners or validators full control over transaction ordering, i.e., they can freely choose which transactions to include or exclude, as well as in which order. While not an issue initially, the emergence of decentralized finance has introduced new transaction order dependencies allowing parties in control of the ordering to make a profit by front-running others' transactions. In this work, we present the Decentralized Clock Network, a new approach for achieving fair transaction ordering. Users submit their transactions to the network’s clocks, which run an agreement protocol that provides each transaction with a timestamp of receipt which is then used to define the transactions' order. By separating agreement from ordering, our protocol is efficient and has a simpler design compared to other available solutions. Moreover, our protocol brings to the blockchain world the paradigm of asynchronous fallback, where the algorithm operates with stronger fairness guarantees during periods of synchronous use, switching to an asynchronous mode only during times of increased network delay.

Subject Classification

ACM Subject Classification
  • Theory of computation → Cryptographic protocols
Keywords
  • Median Validity
  • Blockchain
  • Fair Ordering
  • Front-running Prevention
  • Miner Extractable Value

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Oracles - DefiLlama, 2023. URL: https://defillama.com/oracles.
  2. Proposer-builder separation, 2023. URL: https://ethereum.org/nl/roadmap/pbs/.
  3. Ittai Abraham, Yonatan Amit, and Danny Dolev. Optimal resilience asynchronous approximate agreement. In Teruo Higashino, editor, Principles of Distributed Systems, pages 229-239, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/11516798_17.
  4. Ananya Appan, Anirudh Chandramouli, and Ashish Choudhury. Perfectly-secure synchronous mpc with asynchronous fallback guarantees. In Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing, PODC'22, pages 92-102, New York, NY, USA, 2022. Association for Computing Machinery. URL: https://doi.org/10.1145/3519270.3538417.
  5. Carsten Baum, James Hsin-yu Chiang, Bernardo David, Tore Kasper Frederiksen, and Lorenzo Gentile. Sok: Mitigation of front-running in decentralized finance. Cryptology ePrint Archive, 2021. URL: https://eprint.iacr.org/2021/1628.
  6. P. Berman and J.A. Garay. Randomized distributed agreement revisited. In FTCS-23 The Twenty-Third International Symposium on Fault-Tolerant Computing, pages 412-419, 1993. URL: https://doi.org/10.1109/FTCS.1993.627344.
  7. Erica Blum, John Katz, and Julian Loss. Synchronous consensus with optimal asynchronous fallback guarantees. In Theory of Cryptography Conference, 2019. URL: https://doi.org/10.1007/978-3-030-36030-6_6.
  8. Erica Blum, Jonathan Katz, and Julian Loss. Tardigrade: An atomic broadcast protocol for arbitrary network conditions. In Advances in Cryptology-ASIACRYPT 2021: 27th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, December 6-10, 2021, Proceedings, Part II 27, pages 547-572. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-92075-3_19.
  9. Erica Blum, Chen-Da Liu-Zhang, and Julian Loss. Always have a backup plan: Fully secure synchronous mpc with asynchronous fallback. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology - CRYPTO 2020, pages 707-731, Cham, 2020. Springer International Publishing. URL: https://doi.org/10.1007/978-3-030-56880-1_25.
  10. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In Advances in Cryptology—ASIACRYPT 2001: 7th International Conference on the Theory and Application of Cryptology and Information Security Gold Coast, Australia, December 9-13, 2001 Proceedings 7, pages 514-532. Springer, 2001. URL: https://doi.org/10.1007/3-540-45682-1_30.
  11. Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation, 75(2):130-143, 1987. URL: https://doi.org/10.1016/0890-5401(87)90054-X.
  12. Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient asynchronous broadcast protocols. In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001, pages 524-541, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/3-540-44647-8_31.
  13. Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantipole: practical asynchronous byzantine agreement using cryptography. In Proceedings of the nineteenth annual ACM symposium on Principles of distributed computing, pages 123-132, 2000. URL: https://doi.org/10.1145/343477.343531.
  14. Christian Cachin, Jovana Mićić, Nathalie Steinhauer, and Luca Zanolini. Quick order fairness. In Financial Cryptography and Data Security: 26th International Conference, FC 2022, Grenada, May 2-6, 2022, Revised Selected Papers, pages 316-333. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-18283-9_15.
  15. Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, STOC '93, pages 42-51, New York, NY, USA, 1993. Association for Computing Machinery. URL: https://doi.org/10.1145/167088.167105.
  16. ChainLink Labs. Fair Sequencing Service (FSS), 2020. URL: https://blog.chain.link/chainlink-fair-sequencing-services-enabling-a-provably-fair-defi-ecosystem/.
  17. Giovanni Deligios, Martin Hirt, and Chen-Da Liu-Zhang. Round-efficient byzantine agreement and multi-party computation with asynchronous fallback. In Theory of Cryptography Conference, pages 623-653. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-90459-3_21.
  18. Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E. Weihl. Reaching approximate agreement in the presence of faults. J. ACM, 33(3):499-516, may 1986. URL: https://doi.org/10.1145/5925.5931.
  19. Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed consensus with one faulty process. Journal of the ACM (JACM), 32(2):374-382, 1985. URL: https://doi.org/10.1145/3149.214121.
  20. Flashbots. Flashbots. URL: https://docs.flashbots.net/.
  21. Flashbots. Mev-explore. URL: https://explore.flashbots.net/.
  22. R. Friedman, A. Mostefaoui, and M. Raynal. Simple and efficient oracle-based consensus protocols for asynchronous byzantine systems. IEEE Transactions on Dependable and Secure Computing, 2(1):46-56, 2005. URL: https://doi.org/10.1109/TDSC.2005.13.
  23. Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer. Optimal synchronous approximate agreement with asynchronous fallback. In Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing, PODC'22, pages 70-80, New York, NY, USA, 2022. Association for Computing Machinery. URL: https://doi.org/10.1145/3519270.3538442.
  24. Lioba Heimbach, Lucianna Kiffer, Christof Ferreira Torres, and Roger Wattenhofer. Ethereum’s proposer-builder separation: Promises and realities. In 2023 ACM Internet Measurement Conference (IMC), Montreal, QC, Canada, oct 2023. URL: https://doi.org/10.1145/3618257.3624824.
  25. Lioba Heimbach and Roger Wattenhofer. SoK: Preventing Transaction Reordering Manipulations in Decentralized Finance. In 4th ACM Conference on Advances in Financial Technologies (AFT), Cambridge, Massachusetts, USA, sep 2022. URL: https://doi.org/10.1145/3558535.3559784.
  26. Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan. Themis: Fast, strong order-fairness in byzantine consensus. Cryptology ePrint Archive, 2021. URL: https://eprint.iacr.org/2021/1465.
  27. Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness for byzantine consensus. In Advances in Cryptology-CRYPTO 2020: 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III 40, pages 451-480. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-56877-1_16.
  28. Klaus Kursawe. Wendy, the good little fairness widget: Achieving order fairness for blockchains. In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies, pages 25-36, 2020. URL: https://doi.org/10.1145/3419614.3423263.
  29. Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM Trans. Program. Lang. Syst., 4(3):382-401, jul 1982. URL: https://doi.org/10.1145/357172.357176.
  30. Christoph Lenzen and Julian Loss. Optimal clock synchronization with signatures. In Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing, PODC'22, pages 440-449, New York, NY, USA, 2022. Association for Computing Machinery. URL: https://doi.org/10.1145/3519270.3538444.
  31. Darya Melnyk and Roger Wattenhofer. Byzantine agreement with interval validity. In 2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS), pages 251-260. IEEE, 2018. URL: https://doi.org/10.1109/SRDS.2018.00036.
  32. Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-free asynchronous binary byzantine consensus with t < n/3, O(N²) messages, and O(1) expected time. J. ACM, 62(4), sep 2015. URL: https://doi.org/10.1145/2785953.
  33. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review, page 21260, 2008. Google Scholar
  34. Pablo Pettinari. Proof-of-stake vs proof-of-work, 2023. URL: https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/pos-vs-pow/.
  35. Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain extractable value: How dark is the forest? In 2022 IEEE Symposium on Security and Privacy (SP), pages 198-214. IEEE, 2022. URL: https://doi.org/10.1109/SP46214.2022.9833734.
  36. Michael O. Rabin. Randomized byzantine generals. In Proceedings of the 24th Annual Symposium on Foundations of Computer Science, SFCS '83, pages 403-409, USA, 1983. IEEE Computer Society. URL: https://doi.org/10.1109/SFCS.1983.48.
  37. Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612-613, nov 1979. URL: https://doi.org/10.1145/359168.359176.
  38. Victor Shoup. Practical threshold signatures. In Advances in Cryptology—EUROCRYPT 2000: International Conference on the Theory and Application of Cryptographic Techniques Bruges, Belgium, May 14-18, 2000 Proceedings 19, pages 207-220. Springer, 2000. URL: https://doi.org/10.1007/3-540-45539-6_15.
  39. David Stolz and Roger Wattenhofer. Byzantine agreement with median validity. In 19th International Conference on Principles of Distributed Systems (OPODIS 2015), volume 46, pages 22:1-22:14. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2015. URL: https://doi.org/10.4230/LIPICS.OPODIS.2015.22.
  40. David Stolz and Roger Wattenhofer. Byzantine Agreement with Median Validity. In Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Butucaru, editors, 19th International Conference on Principles of Distributed Systems (OPODIS 2015), volume 46 of Leibniz International Proceedings in Informatics (LIPIcs), pages 1-14, Dagstuhl, Germany, 2016. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPICS.OPODIS.2015.22.
  41. Sam Toueg. Randomized byzantine agreements. In Proceedings of the Third Annual ACM Symposium on Principles of Distributed Computing, PODC '84, pages 163-178, New York, NY, USA, 1984. Association for Computing Machinery. URL: https://doi.org/10.1145/800222.806744.
  42. Nitin H Vaidya and Vijay K Garg. Byzantine vector consensus in complete graphs. In Proceedings of the 2013 ACM symposium on Principles of distributed computing, pages 65-73, 2013. URL: https://doi.org/10.1145/2484239.2484256.
  43. Anton Wahrstätter, Liyi Zhou, Kaihua Qin, Davor Svetinovic, and Arthur Gervais. Time to bribe: Measuring block construction market. arXiv preprint, 2023. URL: https://arxiv.org/abs/2305.16468.
  44. Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper, 151(2014):1-32, 2014. Google Scholar
  45. Sen Yang, Fan Zhang, Ken Huang, Xi Chen, Youwei Yang, and Feng Zhu. Sok: Mev countermeasures: Theory and practice. arXiv preprint, 2022. URL: https://arxiv.org/abs/2212.05111.
  46. Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. Byzantine ordered consensus without byzantine oligarchy. Cryptology ePrint Archive, 2020. URL: https://eprint.iacr.org/2020/1300.