Crash-Tolerant Perpetual Exploration with Myopic Luminous Robots on Rings

Authors Fukuhito Ooshita , Naoki Kitamura , Ryota Eguchi , Michiko Inoue , Hirotsugu Kakugawa , Sayaka Kamei , Masahiro Shibata , Yuichi Sudo



PDF
Thumbnail PDF

File

LIPIcs.OPODIS.2024.12.pdf
  • Filesize: 0.78 MB
  • 16 pages

Document Identifiers

Author Details

Fukuhito Ooshita
  • Fukui University of Technology, Japan
Naoki Kitamura
  • Osaka University, Japan
Ryota Eguchi
  • Nara Institute of Science and Technology, Japan
Michiko Inoue
  • Nara Institute of Science and Technology, Japan
Hirotsugu Kakugawa
  • Ryukoku University, Shiga, Japan
Sayaka Kamei
  • Hiroshima University, Japan
Masahiro Shibata
  • Kyushu Institute of Technology, Fukuoka, Japan
Yuichi Sudo
  • Hosei University, Tokyo, Japan

Cite As Get BibTex

Fukuhito Ooshita, Naoki Kitamura, Ryota Eguchi, Michiko Inoue, Hirotsugu Kakugawa, Sayaka Kamei, Masahiro Shibata, and Yuichi Sudo. Crash-Tolerant Perpetual Exploration with Myopic Luminous Robots on Rings. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 12:1-12:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.OPODIS.2024.12

Abstract

We investigate crash-tolerant perpetual exploration algorithms by myopic luminous robots on ring networks. Myopic robots mean that they can observe nodes only within a certain fixed distance ϕ, and luminous robots mean that they have light devices that can emit a color from a set of colors. The goal of perpetual exploration is to ensure that robots, starting from specific initial positions and colors, move in such a way that every node is visited by at least one robot infinitely often. As a main contribution, we clarify the tight necessary and sufficient number of robots to realize perpetual exploration when at most f robots crash. In the fully synchronous model, we prove that f+2 robots are necessary and sufficient for any ϕ ≥ 1. In the semi-synchronous and asynchronous models, we prove that 3f+3 (resp., 2f+2) robots are necessary and sufficient if ϕ = 1 (resp., ϕ ≥ 2).

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed algorithms
Keywords
  • mobile robots
  • crash faults
  • LCM model
  • exploration

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Noa Agmon and David Peleg. Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM Journal on Computing, 36(1):56-82, 2006. URL: https://doi.org/10.1137/050645221.
  2. Quentin Bramas, Stéphane Devismes, and Pascal Lafourcade. Infinite grid exploration by disoriented robots. In The 8th International Conference on Networked Systems, pages 129-145, 2020. URL: https://doi.org/10.1007/978-3-030-67087-0_9.
  3. Quentin Bramas, Hirotsugu Kakugawa, Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, Masahiro Shibata, and Sébastien Tixeuil. Stand-up indulgent gathering on lines for myopic luminous robots. In The 38th International Conference on Advanced Information Networking and Applications, pages 110-121, 2024. URL: https://doi.org/10.1007/978-3-031-57853-3_10.
  4. Quentin Bramas, Sayaka Kamei, Anissa Lamani, and Sébastien Tixeuil. Stand-up indulgent gathering on lines. In International Symposium on Stabilization, Safety, and Security of Distributed Systems, pages 451-465, 2023. URL: https://doi.org/10.1007/978-3-031-44274-2_34.
  5. Quentin Bramas, Sayaka Kamei, Anissa Lamani, and Sébastien Tixeuil. Stand-up indulgent gathering on rings. In 31st International Colloquium on Structural Information and Communication Complexity, pages 119-137, 2024. URL: https://doi.org/10.1007/978-3-031-60603-8_7.
  6. Quentin Bramas, Pascal Lafourcade, and Stéphane Devismes. Optimal exclusive perpetual grid exploration by luminous myopic opaque robots with common chirality. Theoretical Computer Science, 977:114162, 2023. URL: https://doi.org/10.1016/J.TCS.2023.114162.
  7. Gianlorenzo D'Angelo, Alfredo Navarra, and Nicolas Nisse. A unified approach for gathering and exclusive searching on rings under weak assumptions. Distributed Computing, 30(1):17-48, 2017. URL: https://doi.org/10.1007/S00446-016-0274-Y.
  8. Omar Darwich, Ahmet-Sefa Ulucan, Quentin Bramas, Anissa Lamani, Anaïs Durand, and Pascal Lafourcade. Perpetual torus exploration by myopic luminous robots. Theoretical Computer Science, 976:114143, 2023. URL: https://doi.org/10.1016/J.TCS.2023.114143.
  9. Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Masafumi Yamashita. Autonomous mobile robots with lights. Theoretical Computer Science, 609:171-184, 2016. URL: https://doi.org/10.1016/J.TCS.2015.09.018.
  10. Xavier Défago, Maria Potop-Butucaru, and Philippe Raipin Parvédy. Self-stabilizing gathering of mobile robots under crash or byzantine faults. Distributed Computing, 33(5):393-421, 2020. URL: https://doi.org/10.1007/S00446-019-00359-X.
  11. Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro. Computing without communicating: Ring exploration by asynchronous oblivious robots. Algorithmica, 65(3):562-583, 2013. URL: https://doi.org/10.1007/S00453-011-9611-5.
  12. Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors. Distributed Computing by Mobile Entities, Current Research in Moving and Computing, volume 11340 of LNCS. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-11072-7.
  13. Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. Gathering of asynchronous robots with limited visibility. Theoretical Computer Science, 337(1-3):147-168, 2005. URL: https://doi.org/10.1016/J.TCS.2005.01.001.
  14. Paola Flocchini, Nicola Santoro, Yuichi Sudo, and Koichi Wada. On asynchrony, memory, and communication: Separations and landscapes. In 27th International Conference on Principles of Distributed Systems, 2023. URL: https://doi.org/10.4230/LIPICS.OPODIS.2023.28.
  15. Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuji Kijima, and Masafumi Yamashita. Pattern formation by oblivious asynchronous mobile robots. SIAM Journal on Computing, 44(3):740-785, 2015. URL: https://doi.org/10.1137/140958682.
  16. Ralf Klasing, Adrian Kosowski, and Alfredo Navarra. Taking advantage of symmetries: Gathering of many asynchronous oblivious robots on a ring. Theoretical Computer Science, 411(34-36):3235-3246, 2010. URL: https://doi.org/10.1016/J.TCS.2010.05.020.
  17. Giuseppe Antonio Di Luna, Paola Flocchini, Nicola Santoro, and Giovanni Viglietta. Turingmobile: a turing machine of oblivious mobile robots with limited visibility and its applications. Distributed Computing, 35(2):105-122, 2022. URL: https://doi.org/10.1007/S00446-021-00406-6.
  18. Shota Nagahama, Fukuhito Ooshita, and Michiko Inoue. Ring exploration of myopic luminous robots with visibility more than one. Information and Computation, 2023. URL: https://doi.org/10.1016/J.IC.2023.105036.
  19. Fukuhito Ooshita and Sébastien Tixeuil. Ring exploration with myopic luminous robots. Information and Computation, 2022. URL: https://doi.org/10.1016/J.IC.2021.104702.
  20. Pavan Poudel, Aisha Aljohani, and Gokarna Sharma. Fault-tolerant complete visibility for asynchronous robots with lights under one-axis agreement. Theoretical Computer Science, 850:116-134, 2021. URL: https://doi.org/10.1016/J.TCS.2020.10.033.
  21. Sergio Rajsbaum, Armando Castañeda, David Flores Peñaloza, and Manuel Alcántara. Fault-tolerant robot gathering problems on graphs with arbitrary appearing times. In 2017 IEEE International Parallel and Distributed Processing Symposium, pages 493-502, 2017. URL: https://doi.org/10.1109/IPDPS.2017.70.
  22. Michael Rubenstein, Christian Ahler, Nick Hoff, Adrian Cabrera, and Radhika Nagpal. Kilobot: A low cost robot with scalable operations designed for collective behaviors. Robotics and Autonomous Systems, 62(7):966-975, 2014. URL: https://doi.org/10.1016/J.ROBOT.2013.08.006.
  23. Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots: Formation of geometric patterns. SIAM Journal on Computing, 28(4):1347-1363, 1999. URL: https://doi.org/10.1137/S009753979628292X.
  24. Yukiko Yamauchi, Taichi Uehara, Shuji Kijima, and Masafumi Yamashita. Plane formation by synchronous mobile robots in the three-dimensional euclidean space. Journal of the ACM, 64(3):16:1-16:43, 2017. URL: https://doi.org/10.1145/3060272.
  25. Yan Yang, Samia Souissi, Xavier Défago, and Makoto Takizawa. Fault-tolerant flocking for a group of autonomous mobile robots. Journal of Systems and Softwares, 84(1):29-36, 2011. URL: https://doi.org/10.1016/J.JSS.2010.08.026.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail