Near-Optimal Communication Byzantine Reliable Broadcast Under a Message Adversary

Authors Timothé Albouy , Davide Frey , Ran Gelles , Carmit Hazay , Michel Raynal , Elad Michael Schiller , François Taïani , Vassilis Zikas



PDF
Thumbnail PDF

File

LIPIcs.OPODIS.2024.14.pdf
  • Filesize: 1.11 MB
  • 29 pages

Document Identifiers

Author Details

Timothé Albouy
  • Univ Rennes, Inria, CNRS, IRISA, 35042 Rennes-cedex, France
Davide Frey
  • Univ Rennes, Inria, CNRS, IRISA, 35042 Rennes-cedex, France
Ran Gelles
  • Bar-Ilan University, Ramat Gan, Israel
Carmit Hazay
  • Bar-Ilan University, Ramat Gan, Israel
Michel Raynal
  • Univ Rennes, Inria, CNRS, IRISA, 35042 Rennes-cedex, France
Elad Michael Schiller
  • Chalmers University of Technology, Gothenburg, Sweden
François Taïani
  • Univ Rennes, Inria, CNRS, IRISA, 35042 Rennes-cedex, France
Vassilis Zikas
  • Georgia Institute of Technology, Atlanta, GA, USA

Acknowledgements

R. Gelles would like to thank Paderborn University and CISPA - Helmholtz Center for Information Security for hosting him while part of this research was done.

Cite As Get BibTex

Timothé Albouy, Davide Frey, Ran Gelles, Carmit Hazay, Michel Raynal, Elad Michael Schiller, François Taïani, and Vassilis Zikas. Near-Optimal Communication Byzantine Reliable Broadcast Under a Message Adversary. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 14:1-14:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.OPODIS.2024.14

Abstract

We address the problem of Reliable Broadcast in asynchronous message-passing systems with n nodes, of which up to t are malicious (faulty), in addition to a message adversary that can drop some of the messages sent by correct (non-faulty) nodes. We present a Message-Adversary-Tolerant Byzantine Reliable Broadcast (MBRB) algorithm that communicates O(|m|+nκ) bits per node, where |m| represents the length of the application message and κ = Ω(log n) is a security parameter. This communication complexity is optimal up to the parameter κ. This significantly improves upon the state-of-the-art MBRB solution (Albouy, Frey, Raynal, and Taïani, TCS 2023), which incurs communication of O(n|m|+n²κ) bits per node. Our solution sends at most 4n² messages overall, which is asymptotically optimal. Reduced communication is achieved by employing coding techniques that replace the need for all nodes to (re-)broadcast the entire application message m. Instead, nodes forward authenticated fragments of the encoding of m using an erasure-correcting code. Under the cryptographic assumptions of threshold signatures and vector commitments, and assuming n > 3t+2d, where the adversary drops at most d messages per broadcast, our algorithm allows at least 𝓁 = n - t - (1 + ε)d (for any arbitrarily low ε > 0) correct nodes to reconstruct m, despite missing fragments caused by the malicious nodes and the message adversary.

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed algorithms
Keywords
  • Asynchronous message-passing
  • Byzantine fault-tolerance
  • Message adversary
  • Reliable broadcast
  • Erasure-correction codes
  • {Threshold} signatures
  • {Vector commitments}

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine Shi. Communication complexity of byzantine agreement, revisited. Distributed Comput., 36(1):3-28, 2023. URL: https://doi.org/10.1007/S00446-022-00428-8.
  2. Timothé Albouy, Emmanuelle Anceaume, Davide Frey, Mathieu Gestin, Arthur Rauch, Michel Raynal, and François Taïani. Asynchronous BFT asset transfer: quasi-anonymous, light, and consensus-free. CoRR, arXiv:2405.18072, 2024. URL: https://doi.org/10.48550/arXiv.2405.18072.
  3. Timothé Albouy, Davide Frey, Michel Raynal, and François Taïani. A modular approach to construct signature-free BRB algorithms under a message adversary. In 26th International Conference on Principles of Distributed Systems (OPODIS 2022), volume 253 of LIPIcs, pages 26:1-26:23, 2023. URL: https://doi.org/10.4230/LIPICS.OPODIS.2022.26.
  4. Timothé Albouy, Davide Frey, Michel Raynal, and François Taïani. Asynchronous Byzantine reliable broadcast with a message adversary. Theor. Comput. Sci., 978:114110, 2023. URL: https://doi.org/10.1016/J.TCS.2023.114110.
  5. Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, and Haibin Zhang. Balanced Byzantine reliable broadcast with near-optimal communication and improved computation. In Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing, PODC'22, pages 399-417, 2022. URL: https://doi.org/10.1145/3519270.3538475.
  6. Piotr Berman, Krzysztof Diks, and Andrzej Pelc. Reliable broadcasting in logarithmic time with Byzantine link failures. Journal of Algorithms, 22(2):199-211, 1997. URL: https://doi.org/10.1006/jagm.1996.0810.
  7. Martin Biely. An optimal Byzantine agreement algorithm with arbitrary node and link failures. In IASTED Parallel and Distributed Computing and Systems, volume 1, pages 146-151, 2003. URL: https://www.auto.tuwien.ac.at/Projects/W2F/documents/pdcs03.ps.gz.
  8. Martin Biely, Ulrich Schmid, and Bettina Weiss. Synchronous consensus under hybrid process and link failures. Theoretical Computer Science, 412(40):5602-5630, 2011. URL: https://doi.org/10.1016/j.tcs.2010.09.032.
  9. Silvia Bonomi, Jérémie Decouchant, Giovanni Farina, Vincent Rahli, and Sébastien Tixeuil. Practical Byzantine reliable broadcast on partially connected networks. In ICDCS, pages 506-516. IEEE, 2021. URL: https://doi.org/10.1109/ICDCS51616.2021.00055.
  10. Gabriel Bracha. Asynchronous byzantine agreement protocols. Inf. Comput., 75(2):130-143, 1987. URL: https://doi.org/10.1016/0890-5401(87)90054-X.
  11. Gabriel Bracha and Sam Toueg. Resilient consensus protocols. In Proceedings of the Second Annual ACM Symposium on Principles of Distributed Computing, pages 12-26. ACM, August 1983. URL: https://doi.org/10.1145/800221.806706.
  12. Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. J. ACM, 32(4):824-840, 1985. URL: https://doi.org/10.1145/4221.214134.
  13. C. Cachin and J.A. Poritz. Secure INtrusion-tolerant replication on the internet. In Proceedings International Conference on Dependable Systems and Networks (DSN), pages 167-176, 2002. URL: https://doi.org/10.1109/DSN.2002.1028897.
  14. C. Cachin and S. Tessaro. Asynchronous verifiable information dispersal. In 24th IEEE Symposium on Reliable Distributed Systems (SRDS'05), pages 191-201, 2005. URL: https://doi.org/10.1109/RELDIS.2005.9.
  15. Dario Catalano and Dario Fiore. Vector commitments and their applications. In Proc. 16th Int'l Conference on Practice and Theory in Public-Key Cryptography (PKC'13), volume 7778 of Lecture Notes in Computer Science, pages 55-72. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-36362-7_5.
  16. Keren Censor-Hillel, Shir Cohen, Ran Gelles, and Gal Sela. Distributed computations in fully-defective networks. In Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing, PODC'22, pages 141-150, 2022. URL: https://doi.org/10.1145/3519270.3538432.
  17. Keren Censor-Hillel, Ran Gelles, and Bernhard Haeupler. Making asynchronous distributed computations robust to noise. Distributed Computing, 32(5):405-421, 2019. URL: https://doi.org/10.1007/s00446-018-0343-5.
  18. Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchronous data dissemination and its applications. In CCS, pages 2705-2721. ACM, 2021. URL: https://doi.org/10.1145/3460120.3484808.
  19. Pallab Dasgupta. Agreement under faulty interfaces. Information Processing Letters, 65(3):125-129, 1998. URL: https://doi.org/10.1016/S0020-0190(97)00202-0.
  20. Danny Dolev. The Byzantine generals strike again. Journal of Algorithms, 3(1):14-30, 1982. URL: https://doi.org/10.1016/0196-6774(82)90004-9.
  21. Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for Byzantine agreement. J. ACM, 32(1):191-204, January 1985. URL: https://doi.org/10.1145/2455.214112.
  22. Sisi Duan, Michael K. Reiter, and Haibin Zhang. BEAT: asynchronous BFT made practical. In CCS, pages 2028-2041. ACM, 2018. URL: https://doi.org/10.1145/3243734.3243812.
  23. Romaric Duvignau, Michel Raynal, and Elad M. Schiller. Self-stabilizing Byzantine fault-tolerant repeated reliable broadcast. In Stabilization, Safety, and Security of Distributed Systems, pages 206-221. Springer International Publishing, 2022. URL: https://doi.org/10.1007/978-3-031-21017-4_14.
  24. Fabian Frei, Ran Gelles, Ahmed Ghazy, and Alexandre Nolin. Content-oblivious leader election on rings. In 38th International Symposium on Distributed Computing (DISC 2024), volume 319, pages 24:1-24:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/LIPICS.DISC.2024.26.
  25. Ran Gelles. Coding for interactive communication: A survey. Foundations and Trends® in Theoretical Computer Science, 13(1–2):1-157, 2017. URL: https://doi.org/10.1561/0400000079.
  26. Li Gong, Patrick Lincoln, and John Rushby. Byzantine agreement with authentication: Observations and applications in tolerating hybrid and link faults. In Dependable Computing and Fault Tolerant Systems, volume 10, pages 139-158. IEEE, 1995. Google Scholar
  27. Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, and Andrei Tonkikh. Dynamic Byzantine reliable broadcast. In 24th International Conference on Principles of Distributed Systems (OPODIS 2020), volume 184, pages 23:1-23:18, Dagstuhl, Germany, 2021. URL: https://doi.org/10.4230/LIPIcs.OPODIS.2020.23.
  28. William M. Hoza and Leonard J. Schulman. The adversarial noise threshold for distributed protocols. In ACM-SIAM Symposium on Discrete Algorithms, pages 240-258, 2016. URL: https://doi.org/10.1137/1.9781611974331.ch18.
  29. Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine generals problem. ACM Trans. Program. Lang. Syst., 4(3):382-401, 1982. URL: https://doi.org/10.1145/357172.357176.
  30. Alexandre Maurer and Sébastien Tixeuil. Self-stabilizing Byzantine broadcast. In 2014 IEEE 33rd International Symposium on Reliable Distributed Systems, pages 152-160, 2014. URL: https://doi.org/10.1109/SRDS.2014.10.
  31. Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor, Advances in Cryptology - CRYPTO' 89 Proceedings, pages 218-238, New York, NY, 1990. Springer New York. URL: https://doi.org/10.1007/0-387-34805-0_21.
  32. Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of BFT protocols. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS '16, pages 31-42, 2016. URL: https://doi.org/10.1145/2976749.2978399.
  33. Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya, and Zhuolun Xiang. Improved extension protocols for Byzantine broadcast and agreement. In 34th International Symposium on Distributed Computing (DISC 2020), volume 179, pages 28:1-28:17, 2020. URL: https://doi.org/10.4230/LIPIcs.DISC.2020.28.
  34. M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM, 27(2):228-234, April 1980. URL: https://doi.org/10.1145/322186.322188.
  35. Andrzej Pelc. Reliable communication in networks with Byzantine link failures. Networks, 22(5):441-459, 1992. URL: https://doi.org/10.1002/net.3230220503.
  36. Kenneth J. Perry and Sam Toueg. Distributed agreement in the presence of processor and communication faults. IEEE Trans. Softw., SE-12(3):477-482, 1986. URL: https://doi.org/10.1109/TSE.1986.6312888.
  37. Michel Raynal. Message adversaries. In Encyclopedia of Algorithms, pages 1272-1276. Springer, 2016. URL: https://doi.org/10.1007/978-1-4939-2864-4_609.
  38. Michel Raynal. Fault-Tolerant Message-Passing Distributed Systems - An Algorithmic Approach. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-94141-7.
  39. Irving S. Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of the Society for Industrial and Applied Mathematics, 8(2):300-304, 1960. Google Scholar
  40. Ron M. Roth. Introduction to coding theory. Cambridge University Press, 2006. Google Scholar
  41. Nicola Santoro and Peter Widmayer. Time is not a healer. In STACS 89, pages 304-313, Berlin, Heidelberg, 1989. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/BFb0028994.
  42. Nicola Santoro and Peter Widmayer. Distributed function evaluation in the presence of transmission faults. In International Symposium on Algorithms, pages 358-367. Springer, 1990. URL: https://doi.org/10.1007/3-540-52921-7_85.
  43. Nicola Santoro and Peter Widmayer. Agreement in synchronous networks with ubiquitous faults. Theor. Comput. Sci., 384(2-3):232-249, 2007. URL: https://doi.org/10.1016/J.TCS.2007.04.036.
  44. Ulrich Schmid and Christof Fetzer. Randomized asynchronous consensus with imperfect communications. In SRDS, pages 361-370. IEEE Computer Society, 2003. URL: https://doi.org/10.1109/RELDIS.2003.1238089.
  45. Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, Proc. Int'l Conference on the Theory and Application of Cryptographic Techniques (EUROCRYPT'2000), volume 1807 of Lecture Notes in Computer Science, pages 207-220. Springer, 2000. URL: https://doi.org/10.1007/3-540-45539-6_15.
  46. Hin-Sing Siu, Yeh-Hao Chin, and Wei-Pang Yang. Byzantine agreement in the presence of mixed faults on processors and links. IEEE Transactions on Parallel and Distributed Systems, 9(4):335-345, April 1998. URL: https://doi.org/10.1109/71.667895.
  47. Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram Kannan, and David Tse. Dispersedledger: High-throughput byzantine consensus on variable bandwidth networks. In NSDI, pages 493-512. USENIX Association, 2022. URL: https://www.usenix.org/conference/nsdi22/presentation/yang.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail