Local Problems in Trees Across a Wide Range of Distributed Models

Authors Anubhav Dhar , Eli Kujawa , Henrik Lievonen , Augusto Modanese , Mikail Muftuoglu , Jan Studený , Jukka Suomela



PDF
Thumbnail PDF

File

LIPIcs.OPODIS.2024.27.pdf
  • Filesize: 1.11 MB
  • 17 pages

Document Identifiers

Author Details

Anubhav Dhar
  • Aalto University, Espoo, Finland
  • Indian Institute of Technology Kharagpur, India
Eli Kujawa
  • Aalto University, Espoo, Finland
  • University of Illinois Urbana-Champaign, IL, USA
Henrik Lievonen
  • Aalto University, Espoo, Finland
Augusto Modanese
  • Aalto University, Espoo, Finland
Mikail Muftuoglu
  • Aalto University, Espoo, Finland
Jan Studený
  • Aalto University, Espoo, Finland
Jukka Suomela
  • Aalto University, Espoo, Finland

Cite As Get BibTex

Anubhav Dhar, Eli Kujawa, Henrik Lievonen, Augusto Modanese, Mikail Muftuoglu, Jan Studený, and Jukka Suomela. Local Problems in Trees Across a Wide Range of Distributed Models. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 27:1-27:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.OPODIS.2024.27

Abstract

The randomized online-LOCAL model captures a number of models of computing; it is at least as strong as all of these models:  
- the classical LOCAL model of distributed graph algorithms, 
- the quantum version of the LOCAL model, 
- finitely dependent distributions [e.g. Holroyd 2016], 
- any model that does not violate physical causality [Gavoille, Kosowski, Markiewicz, DISC 2009], 
- the SLOCAL model [Ghaffari, Kuhn, Maus, STOC 2017], and 
- the dynamic-LOCAL and online-LOCAL models [Akbari et al., ICALP 2023].  In general, the online-LOCAL model can be much stronger than the LOCAL model. For example, there are locally checkable labeling problems (LCLs) that can be solved with logarithmic locality in the online-LOCAL model but that require polynomial locality in the LOCAL model.
However, in this work we show that in trees, many classes of LCL problems have the same locality in deterministic LOCAL and randomized online-LOCAL (and as a corollary across all the above-mentioned models). In particular, these classes of problems do not admit any distributed quantum advantage.
We present a near-complete classification for the case of rooted regular trees. We also fully classify the super-logarithmic region in unrooted regular trees. Finally, we show that in general trees (rooted or unrooted, possibly irregular, possibly with input labels) problems that are global in deterministic LOCAL remain global also in the randomized online-LOCAL model.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Distributed algorithms
Keywords
  • Distributed algorithms
  • quantum-LOCAL model
  • randomized online-LOCAL model
  • locally checkable labeling problems
  • trees

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Amirreza Akbari, Xavier Coiteux-Roy, Francesco D'Amore, François Le Gall, Henrik Lievonen, Darya Melnyk, Augusto Modanese, Shreyas Pai, Marc-Olivier Renou, Václav Rozhon, and Jukka Suomela. Online locality meets distributed quantum computing, 2024. URL: https://doi.org/10.48550/arXiv.2403.01903.
  2. Amirreza Akbari, Navid Eslami, Henrik Lievonen, Darya Melnyk, Joona Särkijärvi, and Jukka Suomela. Locality in online, dynamic, sequential, and distributed graph algorithms. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 10:1-10:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.ICALP.2023.10.
  3. Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Jan Studený, and Jukka Suomela. Efficient classification of locally checkable problems in regular trees. In Christian Scheideler, editor, 36th International Symposium on Distributed Computing, DISC 2022, October 25-27, 2022, Augusta, Georgia, USA, volume 246 of LIPIcs, pages 8:1-8:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.DISC.2022.8.
  4. Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Jan Studený, Jukka Suomela, and Aleksandr Tereshchenko. Locally checkable problems in rooted trees. Distributed Computing, 36(3):277-311, 2023. URL: https://doi.org/10.1007/S00446-022-00435-9.
  5. Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. Almost global problems in the LOCAL model. Distributed Computing, 34(4):259-281, 2021. URL: https://doi.org/10.1007/S00446-020-00375-2.
  6. Alkida Balliu, Mohsen Ghaffari, Fabian Kuhn, Augusto Modanese, Dennis Olivetti, Mikaël Rabie, Jukka Suomela, and Jara Uitto. Shared randomness helps with local distributed problems, 2024. URL: https://doi.org/10.48550/arXiv.2407.05445.
  7. Alkida Balliu, Janne H. Korhonen, Fabian Kuhn, Henrik Lievonen, Dennis Olivetti, Shreyas Pai, Ami Paz, Joel Rybicki, Stefan Schmid, Jan Studený, Jukka Suomela, and Jara Uitto. Sinkless orientation made simple. In Telikepalli Kavitha and Kurt Mehlhorn, editors, 2023 Symposium on Simplicity in Algorithms, SOSA 2023, Florence, Italy, January 23-25, 2023, pages 175-191. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977585.CH17.
  8. Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel Rybicki, Jukka Suomela, and Jara Uitto. A lower bound for the distributed lovász local lemma. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 479-488. ACM, 2016. URL: https://doi.org/10.1145/2897518.2897570.
  9. Yi-Jun Chang. The complexity landscape of distributed locally checkable problems on trees. In Hagit Attiya, editor, 34th International Symposium on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Conference, volume 179 of LIPIcs, pages 18:1-18:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPICS.DISC.2020.18.
  10. Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between randomized and deterministic complexity in the LOCAL model. SIAM Journal on Computing, 48(1):122-143, 2019. URL: https://doi.org/10.1137/17M1117537.
  11. Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the LOCAL model. SIAM Journal on Computing, 48(1):33-69, 2019. URL: https://doi.org/10.1137/17M1157957.
  12. Xavier Coiteux-Roy, Francesco d'Amore, Rishikesh Gajjala, Fabian Kuhn, François Le Gall, Henrik Lievonen, Augusto Modanese, Marc-Olivier Renou, Gustav Schmid, and Jukka Suomela. No distributed quantum advantage for approximate graph coloring. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, pages 1901-1910, New York, NY, USA, 2024. Association for Computing Machinery. URL: https://doi.org/10.1145/3618260.3649679.
  13. Anubhav Dhar, Eli Kujawa, Henrik Lievonen, Augusto Modanese, Mikail Muftuoglu, Jan Studený, and Jukka Suomela. Local problems in trees across a wide range of distributed models, 2024. URL: https://doi.org/10.48550/arXiv.2409.13795.
  14. Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. On derandomizing local distributed algorithms. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 662-673. IEEE Computer Society, 2018. URL: https://doi.org/10.1109/FOCS.2018.00069.
  15. Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the complexity of local distributed graph problems. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 784-797. ACM, 2017. URL: https://doi.org/10.1145/3055399.3055471.
  16. Mohsen Ghaffari and Hsin-Hao Su. Distributed degree splitting, edge coloring, and orientations. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2505-2523. SIAM, 2017. URL: https://doi.org/10.1137/1.9781611974782.166.
  17. Christoph Grunau, Václav Rozhon, and Sebastian Brandt. The landscape of distributed complexities on trees and beyond. In Alessia Milani and Philipp Woelfel, editors, PODC '22: ACM Symposium on Principles of Distributed Computing, Salerno, Italy, July 25 - 29, 2022, pages 37-47. ACM, 2022. URL: https://doi.org/10.1145/3519270.3538452.
  18. Alexander E. Holroyd and Thomas M. Liggett. Finitely dependent coloring. Forum of Mathematics, Pi, 4, 2016. URL: https://doi.org/10.1017/fmp.2016.7.
  19. Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing, 21(1):193-201, 1992. URL: https://doi.org/10.1137/0221015.
  20. Moni Naor. A lower bound on probabilistic algorithms for distributive ring coloring. SIAM Journal on Discrete Mathematics, 4(3):409-412, 1991. URL: https://doi.org/10.1137/0404036.
  21. Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM Journal on Computing, 24(6):1259-1277, 1995. URL: https://doi.org/10.1137/S0097539793254571.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail