Fast, Fair and Truthful Distributed Stable Matching for Common Preferences

Authors Juho Hirvonen , Sara Ranjbaran



PDF
Thumbnail PDF

File

LIPIcs.OPODIS.2024.30.pdf
  • Filesize: 0.8 MB
  • 20 pages

Document Identifiers

Author Details

Juho Hirvonen
  • Helsinki Institute for Information Technology HIIT, Finland
  • Department of Computer Science, Aalto University, Espoo, Finland
Sara Ranjbaran
  • Department of Computer Science, Aalto University, Espoo, Finland

Cite As Get BibTex

Juho Hirvonen and Sara Ranjbaran. Fast, Fair and Truthful Distributed Stable Matching for Common Preferences. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 30:1-30:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.OPODIS.2024.30

Abstract

Stable matching is a fundamental problem studied both in economics and computer science. The task is to find a matching between two sides of agents that have preferences over who they want to be matched with. A matching is stable if no pair of agents prefer each other over their current matches. The deferred acceptance algorithm of Gale and Shapley solves this problem in polynomial time. Further, it is a mechanism: the proposing side in the algorithm is always incentivised to report their preferences truthfully.
The deferred acceptance algorithm has a natural interpretation as a distributed algorithm (and thus a distributed mechanism). However, the algorithm is slow in the worst case and it is known that the stable matching problem cannot be solved efficiently in the distributed setting. In this work we study a natural special case of the stable matching problem where all agents on one of the two sides share common preferences. We show that in this case the deferred acceptance algorithm does yield a fast and truthful distributed mechanism for finding a stable matching. We show how algorithms for sampling random colorings can be used to break ties fairly and extend the results to fractional stable matching.

Subject Classification

ACM Subject Classification
  • Theory of computation → Algorithmic mechanism design
  • Theory of computation → Distributed algorithms
Keywords
  • stable matching
  • deferred acceptance
  • local algorithm
  • mechanism design

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ittai Abraham, Danny Dolev, and Joseph Y. Halpern. Distributed protocols for leader election: A game-theoretic perspective. ACM Trans. Economics and Comput., 7(1):4:1-4:26, 2019. URL: https://doi.org/10.1145/3303712.
  2. Yehuda Afek, Yehonatan Ginzberg, Shir Landau Feibish, and Moshe Sulamy. Distributed computing building blocks for rational agents. In Magnús M. Halldórsson and Shlomi Dolev, editors, Proc. 2014 ACM Symposium on Principles of Distributed Computing (PODC 2014), pages 406-415. ACM, 2014. URL: https://doi.org/10.1145/2611462.2611481.
  3. Steve Alpern and Diane Reyniers. Strategic mating with common preferences. Journal of Theoretical Biology, 237(4):337-354, 2005. URL: https://doi.org/10.1016/j.jtbi.2003.09.021.
  4. Nir Amira, Ran Giladi, and Zvi Lotker. Distributed weighted stable marriage problem. In Proc. 17th Internation Colloquium on Structural Information and Communication Complexity (SIROCCO 2010), pages 29-40, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-642-13284-1_4.
  5. Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka Suomela. Lower bounds for maximal matchings and maximal independent sets. J. ACM, 68(5):39:1-39:30, 2021. URL: https://doi.org/10.1145/3461458.
  6. Leonid Barenboim, Michael Elkin, and Uri Goldenberg. Locally-iterative distributed (Δ + 1)-coloring and applications. J. ACM, 69(1):5:1-5:26, 2022. URL: https://doi.org/10.1145/3486625.
  7. Ken Burdett and Melvyn G. Coles. Marriage and class. The Quarterly Journal of Economics, 112(1):141-168, 1997. URL: http://www.jstor.org/stable/2951279.
  8. Ioannis Caragiannis, Aris Filos-Ratsikas, Panagiotis Kanellopoulos, and Rohit Vaish. Stable fractional matchings. In Proc. 2019 ACM Conference on Economics and Computation (EC 2019), pages 21-39. ACM, 2019. URL: https://doi.org/10.1145/3328526.3329637.
  9. Charlie Carlson, Daniel Frishberg, and Eric Vigoda. Improved Distributed Algorithms for Random Colorings. In Proc. 27th International Conference on Principles of Distributed Systems (OPODIS 2023), volume 286 of Leibniz International Proceedings in Informatics (LIPIcs), pages 13:1-13:18, Dagstuhl, Germany, 2024. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.OPODIS.2023.13.
  10. Simon Collet, Pierre Fraigniaud, and Paolo Penna. Equilibria of games in networks for local tasks. In Proc. 22nd International Conference on Principles of Distributed Systems (OPODIS 2018), volume 125 of LIPIcs, pages 6:1-6:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.OPODIS.2018.6.
  11. Lester E. Dubins and David A. Freedman. Machiavelli and the gale-shapley algorithm. The American Mathematical Monthly, 88(7):485-494, 1981. URL: https://doi.org/10.2307/2321753.
  12. Kimmo Eriksson and Olle Häggström. Instability of matchings in decentralized markets with various preference structures. Int. J. Game Theory, 36(3-4):409-420, 2008. URL: https://doi.org/10.1007/S00182-007-0081-6.
  13. Joan Feigenbaum, Christos H. Papadimitriou, and Scott Shenker. Sharing the cost of multicast transmissions. J. Comput. Syst. Sci., 63(1):21-41, 2001. URL: https://doi.org/10.1006/JCSS.2001.1754.
  14. Joan Feigenbaum, Michael Schapira, and Scott Shenker. Distributed Algorithmic Mechanism Design, pages 363-384. Cambridge University Press, 2007. Google Scholar
  15. Weiming Feng, Yuxin Sun, and Yitong Yin. What can be sampled locally? In Proc. 2017 ACM Symposium on Principles of Distributed Computing (PODC 2017), pages 121-130, 2017. URL: https://doi.org/10.1145/3087801.3087815.
  16. Manuela Fischer and Mohsen Ghaffari. A simple parallel and distributed sampling technique: Local glauber dynamics. In Proc. 32nd International Symposium on Distributed Computing (DISC 2018), volume 121 of LIPIcs, pages 26:1-26:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPICS.DISC.2018.26.
  17. Patrik Floréen, Petteri Kaski, Valentin Polishchuk, and Jukka Suomela. Almost stable matchings by truncating the gale-shapley algorithm. Algorithmica, 58(1):102-118, 2010. URL: https://doi.org/10.1007/s00453-009-9353-9.
  18. David Gale and Lloyd S. Shapley. College admissions and the stability of marriage. The American Mathematical Monthly, 69(1):9-15, 1962. URL: https://doi.org/10.2307/2312726.
  19. Zihan Gao, Wanming Hao, and Shouyi Yang. Joint offloading and resource allocation for multi-user multi-edge collaborative computing system. IEEE Trans. Veh. Technol., 71(3):3383-3388, 2022. URL: https://doi.org/10.1109/TVT.2021.3139843.
  20. Avinatan Hassidim, Yishay Mansour, and Shai Vardi. Local computation mechanism design. ACM Trans. Economics and Comput., 4(4):21:1-21:24, 2016. URL: https://doi.org/10.1145/2956584.
  21. Robert W. Irving, David F. Manlove, and Sandy Scott. The stable marriage problem with master preference lists. Discrete Applied Mathematics, 156(15):2959-2977, 2008. URL: https://doi.org/j.dam.2008.01.002.
  22. Naoyuki Kamiyama. Stable matchings with ties, master preference lists, and matroid constraints. In Martin Hoefer, editor, Algorithmic Game Theory (SAGT 2015), pages 3-14, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-662-48433-3_1.
  23. Naoyuki Kamiyama. Many-to-many stable matchings with ties, master preference lists, and matroid constraints. In Proc. 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019), pages 583-591, 2019. URL: http://dl.acm.org/citation.cfm?id=3331743, URL: https://doi.org/10.5555/3306127.3331743.
  24. Pankaj Khanchandani and Roger Wattenhofer. Distributed stable matching with similar preference lists. In Proc. 20th International Conference on Principles of Distributed Systems, (OPODIS 2016), volume 70 of LIPIcs, pages 12:1-12:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPICS.OPODIS.2016.12.
  25. Donald Ervin Knuth. Stable marriage and its relation to other combinatorial problems: An introduction to the mathematical analysis of algorithms, volume 10. American Mathematical Soc., 1997. Google Scholar
  26. Nathan Linial. Locality in Distributed Graph Algorithms. SIAM Journal on Computing, 21(1):193-201, 1992. URL: https://doi.org/10.1137/0221015.
  27. Yannic Maus and Tigran Tonoyan. Local conflict coloring revisited: Linial for lists. In Hagit Attiya, editor, Proc. 34th International Symposium on Distributed Computing (DISC 2020), volume 179 of LIPIcs, pages 16:1-16:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPICS.DISC.2020.16.
  28. Economic Sciences Prize Committee of the Royal Swedish Academy of Sciences. Scientific background on the sveriges riksbank prize in economic sciences in memory of alfred nobel 2012: Stable allocations and the practice of market design. https://www.kva.se/app/uploads/2012/10/globalassets-priser-ekonomi-2012-scibackeken12.pdf, 2012. Accessed:15-02-2024.
  29. Gregg O'Malley. Algorithmic aspects of stable matching. PhD thesis, University of Glasgow, 2007. Google Scholar
  30. Rafail Ostrovsky and Will Rosenbaum. Fast distributed almost stable matchings. In Proc. 2015 ACM Symposium on Principles of Distributed Computing (PODC 2015), pages 101-108. ACM, 2015. URL: https://doi.org/10.1145/2767386.2767424.
  31. David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied Mathematics, 2000. URL: https://doi.org/10.1137/1.9780898719772.
  32. Alvin E. Roth. The economics of matching: Stability and incentives. Mathematics of Operations Research, 7(4):617-628, 1982. URL: https://doi.org/10.1287/moor.7.4.617.
  33. Alvin E. Roth. The evolution of the labor market for medical interns and residents: A case study in game theory. Journal of Political Economy, 92(6):991-1016, 1984. URL: https://doi.org/10.1086/261272.
  34. Alvin E. Roth. Deferred acceptance algorithms: history, theory, practice, and open questions. Int. J. Game Theory, 36(3-4):537-569, 2008. URL: https://doi.org/10.1007/S00182-008-0117-6.
  35. Alvin E. Roth. What have we learned from market design? The Economic Journal, 118(527):285-310, 2008. URL: https://doi.org/10.1111/j.1468-0297.2007.02121.x.
  36. Alvin E. Roth, Uriel G. Rothblum, and John H. Vande Vate. Stable matchings, optimal assignments, and linear programming. Mathematics of Operations Research, 18(4):803-828, 1993. URL: http://www.jstor.org/stable/3690124, URL: https://doi.org/10.1287/MOOR.18.4.803.
  37. Sandy Scott. A Study Of Stable Marriage Problems With Ties. PhD thesis, University of Glasgow, 2005. Google Scholar
  38. John H. Vande Vate. Linear programming brings marital bliss. Operations Research Letters, 8(3):147-153, 1989. URL: https://doi.org/10.1016/0167-6377(89)90041-2.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail