Distributed Agreement in the Arrovian Framework

Authors Kenan Wood , Hammurabi Mendes , Jonad Pulaj



PDF
Thumbnail PDF

File

LIPIcs.OPODIS.2024.32.pdf
  • Filesize: 0.86 MB
  • 18 pages

Document Identifiers

Author Details

Kenan Wood
  • Davidson College, NC, USA
Hammurabi Mendes
  • Davidson College, NC, USA
Jonad Pulaj
  • Davidson College, NC, USA

Cite As Get BibTex

Kenan Wood, Hammurabi Mendes, and Jonad Pulaj. Distributed Agreement in the Arrovian Framework. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 32:1-32:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.OPODIS.2024.32

Abstract

Preference aggregation is a fundamental problem in voting theory, in which public input rankings of a set of alternatives (called preferences) must be aggregated into a single preference that satisfies certain soundness properties. The celebrated Arrow Impossibility Theorem is equivalent to a distributed task in a synchronous fault-free system that satisfies properties such as respecting unanimous preferences, maintaining independence of irrelevant alternatives (IIA), and non-dictatorship, along with consensus since only one preference can be decided.
In this work, we study a weaker distributed task in which crash faults are introduced, IIA is not required, and the consensus property is relaxed to either k-set agreement or ε-approximate agreement using any metric on the set of preferences. In particular, we prove several novel impossibility results for both of these tasks in both synchronous and asynchronous distributed systems. We additionally show that the impossibility for our ε-approximate agreement task using the Kendall tau or Spearman footrule metrics holds under extremely weak assumptions.

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed algorithms
  • Mathematics of computing → Discrete mathematics
Keywords
  • Approximate Agreement
  • Set Agreement
  • Preference Aggregation
  • Voting Theory
  • Impossibility

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal validated asynchronous byzantine agreement. Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, 2019. URL: https://api.semanticscholar.org/CorpusID:197660727.
  2. Dan Alistarh, Faith Ellen, and Joel Rybicki. Wait-free approximate agreement on graphs. In Structural Information and Communication Complexity: 28th International Colloquium, SIROCCO 2021, Wrocław, Poland, June 28 – July 1, 2021, Proceedings, pages 87-105, Berlin, Heidelberg, 2021. Springer-Verlag. URL: https://doi.org/10.1007/978-3-030-79527-6_6.
  3. Kenneth J. Arrow. Social Choice and Individual Values. John Wiley & Sons, 1951. Google Scholar
  4. Hagit Attiya and Faith Ellen. The Step Complexity of Multidimensional Approximate Agreement. In Eshcar Hillel, Roberto Palmieri, and Etienne Rivière, editors, 26th International Conference on Principles of Distributed Systems (OPODIS 2022), volume 253 of Leibniz International Proceedings in Informatics (LIPIcs), pages 6:1-6:12, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.OPODIS.2022.6.
  5. Hagit Attiya and Sergio Rajsbaum. Indistinguishability. Commun. ACM, 63(5):90-99, April 2020. URL: https://doi.org/10.1145/3376902.
  6. Y.M. Baryshnikov. Unifying impossibility theorems: A topological approach. Advances in Applied Mathematics, 14(4):404-415, 1993. URL: https://doi.org/10.1006/aama.1993.1020.
  7. Yuliy Baryshnikov and Joseph Root. A topological proof of the gibbard–satterthwaite theorem. Economics Letters, 234:111447, 2024. URL: https://doi.org/10.1016/j.econlet.2023.111447.
  8. Donald E. Campbell and Jerry S. Kelly. Chapter 1 impossibility theorems in the arrovian framework. In Handbook of Social Choice and Welfare, volume 1 of Handbook of Social Choice and Welfare, pages 35-94. Elsevier, 2002. URL: https://doi.org/10.1016/S1574-0110(02)80005-4.
  9. Soma Chaudhuri. More choices allow more faults: set consensus problems in totally asynchronous systems. Inf. Comput., 105(1):132-158, July 1993. URL: https://doi.org/10.1006/inco.1993.1043.
  10. Soma Chaudhuri, Maurice Erlihy, Nancy A. Lynch, and Mark R. Tuttle. Tight bounds for k-set agreement. J. ACM, 47(5):912-943, September 2000. URL: https://doi.org/10.1145/355483.355489.
  11. Himanshu Chauhan and Vijay K. Garg. Democratic elections in faulty distributed systems. In Davide Frey, Michel Raynal, Saswati Sarkar, Rudrapatna K. Shyamasundar, and Prasun Sinha, editors, Distributed Computing and Networking, pages 176-191, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-642-35668-1_13.
  12. Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Sergio Rajsbaum. Black art: Obstruction-free k-set agreement with |mwmr registers| < |proccesses|. In Vincent Gramoli and Rachid Guerraoui, editors, Networked Systems, pages 28-41, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-642-40148-0_3.
  13. Persi Diaconis and R. L. Graham. Spearman’s Footrule as a Measure of Disarray. Journal of the Royal Statistical Society: Series B (Methodological), 39(2):262-268, December 2018. URL: https://doi.org/10.1111/j.2517-6161.1977.tb01624.x.
  14. Danny Dolev, Nancy Lynch, Shlomit Pinter, Eugene Stark, and William Weihl. Reaching approximate agreement in the presence of faults. Journal of the ACM, 33(3):499-516, May 1986. URL: https://doi.org/10.1145/5925.5931.
  15. Mose Mizrahi Erbes and Roger Wattenhofer. Asynchronous approximate agreement with quadratic communication. arXiv preprint, 2024. URL: https://doi.org/10.48550/arXiv.2408.05495.
  16. A. Fekete. Asynchronous approximate agreement. In Proceedings of the sixth annual ACM symposium on principles of distributed computing (PODC), pages 64-76, New York, NY, USA, 1987. URL: https://doi.org/10.1145/41840.41846.
  17. Frank Feys and Helle Hansen. Arrow’s theorem through a fixpoint argument. Electronic Proceedings in Theoretical Computer Science, 297:175-188, July 2019. URL: https://doi.org/10.4204/EPTCS.297.12.
  18. Faith Fich and Eric Ruppert. Hundreds of impossibility results for distributed computing. Distributed Computing, 16(2):121-163, September 2003. URL: https://doi.org/10.1007/s00446-003-0091-y.
  19. Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one faulty process. J. ACM, 32(2):374-382, April 1985. URL: https://doi.org/10.1145/3149.214121.
  20. Pierre Fraigniaud, Ami Paz, and Sergio Rajsbaum. A speedup theorem for asynchronous computation with applications to consensus and approximate agreement. In Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing, PODC'22, pages 460-470, New York, NY, USA, 2022. Association for Computing Machinery. URL: https://doi.org/10.1145/3519270.3538422.
  21. Pierre Fraigniaud, Sergio Rajsbaum, Matthieu Roy, and Corentin Travers. The opinion number of set-agreement. In Marcos K. Aguilera, Leonardo Querzoni, and Marc Shapiro, editors, Principles of Distributed Systems, pages 155-170, Cham, 2014. Springer International Publishing. URL: https://doi.org/10.1007/978-3-319-14472-6_11.
  22. Matthias Függer and Thomas Nowak. Fast multidimensional asymptotic and approximate consensus. ArXiv, abs/1805.04923, 2018. URL: https://arxiv.org/abs/1805.04923.
  23. Hugo Rincon Galeana, Sergio Rajsbaum, and Ulrich Schmid. Continuous Tasks and the Asynchronous Computability Theorem. In Mark Braverman, editor, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022), volume 215 of Leibniz International Proceedings in Informatics (LIPIcs), pages 73:1-73:27, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ITCS.2022.73.
  24. John Geanakoplos. Three brief proofs of arrow’s impossibility theorem. Economic Theory, 26(1):211-215, July 2005. URL: https://doi.org/10.1007/s00199-004-0556-7.
  25. Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer. Multidimensional approximate agreement with asynchronous fallback. Cryptology ePrint Archive, Paper 2023/449, 2023. URL: https://eprint.iacr.org/2023/449.
  26. Allan Gibbard. Manipulation of voting schemes: A general result. s.n., 1998. Google Scholar
  27. Maurice Herlihy, D. N. Kozlov, and Sergio Rajsbaum. Distributed computing through combinatorial topology. Elsevier/Morgan Kaufmann, 2014. Google Scholar
  28. M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81-93, 1938. URL: http://www.jstor.org/stable/2332226.
  29. M.G. Kendall. Rank Correlation Methods. C. Griffin, 1948. URL: https://books.google.com/books?id=hiBMAAAAMAAJ.
  30. Isaac Lara, Sergio Rajsbaum, and Armajac Raventós-Pujol. A generalization of arrow’s impossibility theorem through combinatorial topology, July 2024. URL: https://arxiv.org/abs/2402.06024.
  31. Jérémy Ledent. Brief announcement: Variants of approximate agreement on graphs and simplicial complexes. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, PODC'21, pages 427-430, New York, NY, USA, 2021. Association for Computing Machinery. URL: https://doi.org/10.1145/3465084.3467946.
  32. Hammurabi Mendes. Byzantine Computability and Combinatorial Topology. PhD thesis, Brown University, USA, 2016. URL: https://cs.brown.edu/research/pubs/theses/phd/2016/mendes.hammurabi.pdf.
  33. Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in byzantine asynchronous systems. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC'13, Palo Alto, CA, USA, June 1-4, 2013, pages 391-400. ACM, 2013. URL: https://doi.org/10.1145/2488608.2488657.
  34. Hammurabi Mendes and Maurice Herlihy. Tight bounds for connectivity and set agreement in byzantine synchronous systems. In Andréa W. Richa, editor, 31st International Symposium on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria, volume 91 of LIPIcs, pages 35:1-35:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPICS.DISC.2017.35.
  35. Hammurabi Mendes, Maurice Herlihy, Nitin H. Vaidya, and Vijay K. Garg. Multidimensional agreement in byzantine systems. Distributed Comput., 28(6):423-441, 2015. URL: https://doi.org/10.1007/S00446-014-0240-5.
  36. Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. Distributed computability in byzantine asynchronous systems. In David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 704-713. ACM, 2014. URL: https://doi.org/10.1145/2591796.2591853.
  37. Achour Mostefaoui, Sergio Rajsbaum, and Michel Raynal. The combined power of conditions and failure detectors to solve asynchronous set agreement. In Proceedings of the Twenty-Fourth Annual ACM Symposium on Principles of Distributed Computing, PODC '05, pages 179-188, New York, NY, USA, 2005. Association for Computing Machinery. URL: https://doi.org/10.1145/1073814.1073848.
  38. Thomas Nowak and Joel Rybicki. Byzantine Approximate Agreement on Graphs. In Jukka Suomela, editor, 33rd International Symposium on Distributed Computing (DISC 2019), volume 146 of Leibniz International Proceedings in Informatics (LIPIcs), pages 29:1-29:17, Dagstuhl, Germany, 2019. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.DISC.2019.29.
  39. R. De Prisco, D. Malkhi, and M. Reiter. On k-set consensus problems in asynchronous systems. IEEE Transactions on Parallel & Distributed Systems, 12(01):7-21, January 2001. URL: https://doi.org/10.1109/71.899936.
  40. Sergio Rajsbaum and Armajac Raventós-Pujol. A distributed combinatorial topology approach to arrow’s impossibility theorem. In Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing, PODC'22, page 471–481, New York, NY, USA, 2022. Association for Computing Machinery. URL: https://doi.org/10.1145/3519270.3538433.
  41. Yasuhito Tanaka. On the equivalence of the arrow impossibility theorem and the brouwer fixed point theorem. Applied Mathematics and Computation, 172(2):1303-1314, 2006. Special issue for The Beijing-HK Scientific Computing Meetings. URL: https://doi.org/10.1016/j.amc.2005.02.054.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail