Quantum Simultaneous Protocols Without Public Coins Using Modified Equality Queries

Authors François Le Gall , Oran Nadler, Harumichi Nishimura, Rotem Oshman



PDF
Thumbnail PDF

File

LIPIcs.OPODIS.2024.34.pdf
  • Filesize: 0.89 MB
  • 20 pages

Document Identifiers

Author Details

François Le Gall
  • Graduate School of Mathematics, Nagoya University, Japan
Oran Nadler
  • Blavatnik School of Computer Science, Tel Aviv University, Israel
Harumichi Nishimura
  • Graduate School of Informatics, Nagoya University, Japan
Rotem Oshman
  • Blavatnik School of Computer Science, Tel Aviv University, Israel

Cite As Get BibTex

François Le Gall, Oran Nadler, Harumichi Nishimura, and Rotem Oshman. Quantum Simultaneous Protocols Without Public Coins Using Modified Equality Queries. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 34:1-34:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.OPODIS.2024.34

Abstract

In this paper we study a quantum version of the multiparty simultaneous message-passing (SMP) model, and we show that in some cases, quantum communication can replace public randomness, even with no entanglement between the parties. This was already known for two players, but not for more than two players, and indeed, so far all that was known was a negative result. Our main technical contribution is a compiler that takes any classical public-coin simultaneous protocol based on "modified equality queries," and converts it into a quantum simultaneous protocol without public coins with roughly the same communication complexity. We then use our compiler to derive protocols for several problems, including frequency moments, neighborhood diversity, enumeration of isolated cliques, and more.

Subject Classification

ACM Subject Classification
  • Theory of computation → Quantum communication complexity
Keywords
  • SMP model
  • multi-party communication
  • quantum distributed algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Scott Aaronson. Lecture notes for the 28th McGill invitational workshop on computational complexity. arXiv preprint, 2016. URL: https://arxiv.org/abs/1607.05256.
  2. Amirreza Akbari, Xavier Coiteux-Roy, Francesco d'Amore, François Le Gall, Henrik Lievonen, Darya Melnyk, Augusto Modanese, Shreyas Pai, Marc-Olivier Renou, Václav Rozhoň, and Jukka Suomela. Online locality meets distributed quantum computing. ArXiv:2403.01903, 2024. URL: https://doi.org/10.48550/arXiv.2403.01903.
  3. Joran van Apeldoorn and Tijn de Vos. A framework for distributed quantum queries in the CONGEST model. In Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing (PODC 2022), pages 109-119, 2022. URL: https://doi.org/10.1145/3519270.3538413.
  4. Heger Arfaoui and Pierre Fraigniaud. What can be computed without communications? SIGACT News, 45(3):82-104, 2014. URL: https://doi.org/10.1145/2670418.2670440.
  5. László Babai and Peter G. Kimmel. Randomized simultaneous messages: Solution of a problem of Yao in communication complexity. In Proceedings of the 12th Annual IEEE Conference on Computational Complexity (CCC 1997), pages 239-246, 1997. URL: https://doi.org/10.1109/CCC.1997.612319.
  6. Hans-Jürgen Bandelt and Henry Martyn Mulder. Distance-hereditary graphs. Journal of Combinatorial Theory, Series B, 41(2):182-208, 1986. URL: https://doi.org/10.1016/0095-8956(86)90043-2.
  7. Adriano Barenco, André Berthiaume, David Deutsch, Artur Ekert, Richard Jozsa, and Chiara Macchiavello. Stabilization of quantum computations by symmetrization. SIAM Journal on Computing, 26(5):1541-1557, 1997. URL: https://doi.org/10.1137/S0097539796302452.
  8. Florent Becker, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca. The simultaneous number-in-hand communication model for networks: Private coins, public coins and determinism. In Proceedings of the 21st International Colloquium on Structural Information and Communication Complexity (SIROCCO 2024), volume 8576 of Lecture Notes in Computer Science, pages 83-95. Springer, 2014. URL: https://doi.org/10.1007/978-3-319-09620-9_8.
  9. Harry Buhrman, Richard Cleve, John Watrous, and Ronald de Wolf. Quantum fingerprinting. Physical Review Letters, 87:167902, 2001. URL: https://doi.org/10.1103/PhysRevLett.87.167902.
  10. Xavier Coiteux-Roy, Francesco d'Amore, Rishikesh Gajjala, Fabian Kuhn, François Le Gall, Henrik Lievonen, Augusto Modanese, Marc-Olivier Renou, Gustav Schmid, and Jukka Suomela. No distributed quantum advantage for approximate graph coloring. In Proceedings of the 56th ACM Symposium on Theory of Computing (STOC 2024), pages 1901-1910, 2024. URL: https://doi.org/10.1145/3618260.3649679.
  11. Vasil S. Denchev and Gopal Pandurangan. Distributed quantum computing: a new frontier in distributed systems or science fiction? SIGACT News, 39(3):77-95, 2008. URL: https://doi.org/10.1145/1412700.1412718.
  12. Michael Elkin, Hartmut Klauck, Danupon Nanongkai, and Gopal Pandurangan. Can quantum communication speed up distributed computation? In Proceedings of the 33rd ACM Symposium on Principles of Distributed Computing (PODC 2014), pages 166-175, 2014. URL: https://doi.org/10.1145/2611462.2611488.
  13. Orr Fischer, Rotem Oshman, and Uri Zwick. Public vs. private randomness in simultaneous multi-party communication complexity. Theoretical Computer Science, 810:72-81, 2020. URL: https://doi.org/10.1016/j.tcs.2018.04.032.
  14. Pierre Fraigniaud, François Le Gall, Harumichi Nishimura, and Ami Paz. Distributed quantum proofs for replicated data. In Proceedings of the 12th Innovations in Theoretical Computer Science Conference (ITCS 2021), pages 28:1-28:20, 2021. URL: https://doi.org/10.4230/LIPICS.ITCS.2021.28.
  15. Pierre Fraigniaud, Mael Luce, Frédéric Magniez, and Ioan Todinca. Even-cycle detection in the randomized and quantum CONGEST model. In Proceedings of the 43rd ACM Symposium on Principles of Distributed Computing (PODC 2024), pages 209-219, 2024. URL: https://doi.org/10.1145/3662158.3662767.
  16. Jingliang Gao. Quantum union bounds for sequential projective measurements. Physical Review A, 92:052331, 2015. URL: https://doi.org/10.1103/PhysRevA.92.052331.
  17. Dmitry Gavinsky, Tsuyoshi Ito, and Guoming Wang. Shared randomness and quantum communication in the multi-party model. In Proceedings of the 28th Conference on Computational Complexity (CCC 2013), pages 34-43, 2013. URL: https://doi.org/10.1109/CCC.2013.13.
  18. Dmitry Gavinsky, Julia Kempe, and Ronald de Wolf. Quantum communication cannot simulate a public coin, 2004. ArXiv:quant-ph/0411051. Google Scholar
  19. Dmitry Gavinsky and Pavel Pudlák. Exponential separation of quantum and classical non-interactive multi-party communication complexity. In Proceedings of the 23rd Annual IEEE Conference on Computational Complexity (CCC 2008), pages 332-339, 2008. URL: https://doi.org/10.1109/CCC.2008.27.
  20. Cyril Gavoille, Adrian Kosowski, and Marcin Markiewicz. What can be observed locally? In Proceedings of the 23rd International Symposium on Distributed Computing (DISC 2009), volume 5805 of LNCS, pages 243-257. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-04355-0_26.
  21. Hipólito Gómez-Sousa. Multi-party quantum fingerprinting with weak coherent pulses: circuit design and protocol analysis. New Journal of Physics, 22:113004, 2020. URL: https://doi.org/10.1088/1367-2630/abc2e5.
  22. Atsuya Hasegawa, Srijita Kundu, and Harumichi Nishimura. On the power of quantum distributed proofs. In Proceedings of the 43rd ACM Symposium on Principles of Distributed Computing (PODC 2024), pages 220-230, 2024. URL: https://doi.org/10.1145/3662158.3662788.
  23. Wei Huang, Yaoyun Shi, Shengyu Zhang, and Yufan Zhu. The communication complexity of the Hamming distance problem. Information Processing Letters, 99(4):149-153, 2006. URL: https://doi.org/10.1016/j.ipl.2006.01.014.
  24. Hiro Ito and Kazuo Iwama. Enumeration of isolated cliques and pseudo-cliques. ACM Transactions on Algorithms, 5(4):40:1-40:21, 2009. URL: https://doi.org/10.1145/1597036.1597044.
  25. Hiro Ito, Kazuo Iwama, and Tsuyoshi Osumi. Linear-time enumeration of isolated cliques. In Proceedings of the 13th Annual European Symposium (ESA 2005), volume 3669 of Lecture Notes in Computer Science, pages 119-130. Springer, 2005. URL: https://doi.org/10.1007/11561071_13.
  26. Taisuke Izumi and François Le Gall. Quantum distributed algorithm for the All-Pairs Shortest Path problem in the CONGEST-CLIQUE model. In Proceedings of the 38th ACM Symposium on Principles of Distributed Computing (PODC 2019), pages 84-93, 2019. URL: https://doi.org/10.1145/3293611.3331628.
  27. Taisuke Izumi, François Le Gall, and Frédéric Magniez. Quantum distributed algorithm for triangle finding in the CONGEST model. In Proceedings of the 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020), pages 23:1-23:13, 2020. URL: https://doi.org/10.4230/LIPIcs.STACS.2020.23.
  28. Masaru Kada, Harumichi Nishimura, and Tomoyuki Yamakami. The efficiency of quantum identity testing of multiple states. Journal of Physics A: Mathematical and Theoretical, 41:395309, 2008. URL: https://doi.org/10.1088/1751-8113/41/39/395309.
  29. Jarkko Kari, Martín Matamala, Ivan Rapaport, and Ville Salo. Solving the induced subgraph problem in the randomized multiparty simultaneous messages model. In Proceedings of the 22nd International Colloquium on Structural Information and Communication Complexity (SIROCCO 2015), volume 9439 of Lecture Notes in Computer Science, pages 370-384. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-25258-2_26.
  30. Christian Komusiewicz, Falk Hüffner, Hannes Moser, and Rolf Niedermeier. Isolation concepts for efficiently enumerating dense subgraphs. Theoretical Computer Science, 410(38-40):3640-3654, 2009. URL: https://doi.org/10.1016/j.tcs.2009.04.021.
  31. Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica, 64(1):19-37, 2012. URL: https://doi.org/10.1007/s00453-011-9554-x.
  32. François Le Gall, Masayuki Miyamoto, and Harumichi Nishimura. Distributed Merlin-Arthur Synthesis of Quantum States and Its Applications. In Proceedings of the 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023), pages 63:1-63:15, 2023. URL: https://doi.org/10.4230/LIPIcs.MFCS.2023.63.
  33. François Le Gall and Frédéric Magniez. Sublinear-time quantum computation of the diameter in CONGEST networks. In In Proceedings of the 37th ACM Symposium on Principles of Distributed Computing (PODC 2018), pages 337-346, 2018. URL: https://dl.acm.org/citation.cfm?id=3212744, URL: https://doi.org/10.1145/3212734.3212744.
  34. François Le Gall, Masayuki Miyamoto, and Harumichi Nishimura. Distributed quantum interactive proofs. In Proceedings of the 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023), pages 63:1-63:15, 2023. URL: https://doi.org/10.4230/LIPICS.STACS.2023.42.
  35. François Le Gall, Harumichi Nishimura, and Ansis Rosmanis. Quantum advantage for the LOCAL model in distributed computing. In Proceedings of the International Symposium on Theoretical Aspects of Computer Science (STACS), pages 49:1-49:14, 2019. URL: https://doi.org/10.4230/LIPIcs.STACS.2019.49.
  36. Pedro Montealegre, Sebastian Perez-Salazar, Ivan Rapaport, and Ioan Todinca. Graph reconstruction in the congested clique. Journal of Computer and System Sciences, 113:1-17, 2020. URL: https://doi.org/10.1016/j.jcss.2020.04.004.
  37. Ilan Newman. Private vs. common random bits in communication complexity. Information Processing Letters, 39(2):67-71, 1991. URL: https://doi.org/10.1016/0020-0190(91)90157-D.
  38. Ilan Newman and Mario Szegedy. Public vs. private coin flips in one round communication games (extended abstract). In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing (STOC 1996), pages 561-570, 1996. URL: https://doi.org/10.1145/237814.238004.
  39. Ji-Qian Qin, Jing-Tao Wang, Yun-Long Yu, and Xiang-Bin Wang. General theory of quantum fingerprinting network. Physical Review Research, 3:033039, 2021. URL: https://doi.org/10.1103/PhysRevResearch.3.033039.
  40. Seiichiro Tani, Hirotada Kobayashi, and Keiji Matsumoto. Exact quantum algorithms for the leader election problem. ACM Transactions on Computation Theory, 4(1):1:1-1:24, 2012. URL: https://doi.org/10.1145/2141938.2141939.
  41. Xudong Wu and Penghui Yao. Quantum complexity of weighted diameter and radius in CONGEST networks. In Proceedings of the 42nd ACM Symposium on Principles of Distributed Computing (PODC 2022), pages 120-130, 2022. URL: https://doi.org/10.1145/3519270.3538441.
  42. Andrew Chi-Chih Yao. On the power of quantum fingerprinting. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC 2003), pages 77-81, 2003. URL: https://doi.org/10.1145/780542.780554.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail