Distributed Branching Random Walks and Their Applications

Authors Vijeth Aradhya , Seth Gilbert , Thorsten Götte



PDF
Thumbnail PDF

File

LIPIcs.OPODIS.2024.36.pdf
  • Filesize: 0.84 MB
  • 20 pages

Document Identifiers

Author Details

Vijeth Aradhya
  • National University of Singapore, Singapore
Seth Gilbert
  • National University of Singapore, Singapore
Thorsten Götte
  • University of Hamburg, Germany

Cite As Get BibTex

Vijeth Aradhya, Seth Gilbert, and Thorsten Götte. Distributed Branching Random Walks and Their Applications. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 36:1-36:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.OPODIS.2024.36

Abstract

In recent years, the explosion of big data and analytics has necessitated distributed storage and processing with several compute nodes (e.g., multiple datacenters). These nodes collaboratively perform parallel computation, where the data is typically partitioned across these nodes to ensure scalability, redundancy and load-balancing. But the nodes may not always be co-located; in many cases, they are part of a larger communication network. Since those nodes only need to communicate among themselves, a key challenge is to design efficient routes catered to that subnetwork.
In this work, we initiate the study of distributed sampling and routing problems for subnetworks in any well-connected network. Given any network G = (V, E) with mixing time τ_mix, consider the canonical problem of permutation routing [Ghaffari, Kuhn and Su, PODC 2017] that aims to minimize both congestion and dilation of the routes, where the demands (i.e., set of source-terminal pairs) are such that each node sends or receives number of messages proportional to its degree. We show that the permutation routing problem, when demands are restricted to any subset S ⊆ V (i.e., subnetwork), can be solved in exp(O(√(log|S|))) ⋅ Õ(τ_mix) rounds (where Õ(⋅) hides polylogarithmic factors of |V|). This means that the running time depends subpolynomially on the subnetwork size (i.e., not on the entire network size). The ability to solve permutation routing efficiently immediately implies that a large class of parallel algorithms can be simulated efficiently on the subnetwork.
As a prerequisite to constructing efficient routes, we design and analyze distributed branching random walks that distribute tokens started by the nodes in the subnetwork. At a high-level, these algorithms operate by always moving each token according to a (lazy) simple random walk, but also branching a token into multiple tokens at some specified intervals; ultimately, if a node starts a branching walk, with its id in a token, then by the end of execution, several tokens with its id would be randomly distributed among the nodes. As these random walks can be started by many nodes, a crucial challenge is to ensure low-congestion, which is a primary focus of this paper.

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed algorithms
  • Theory of computation → Random walks and Markov chains
  • Networks → Packet scheduling
Keywords
  • Distributed Graph Algorithms
  • Random Walks
  • Permutation Routing

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Alexandr Andoni, Anupam Gupta, and Robert Krauthgamer. Towards (1 + ε)-approximate flow sparsifiers. In Proc. SODA, pages 279-293, 2014. URL: https://doi.org/10.1137/1.9781611973402.20.
  2. John Augustine, Mohsen Ghaffari, Robert Gmyr, Kristian Hinnenthal, Christian Scheideler, Fabian Kuhn, and Jason Li. Distributed computation in node-capacitated networks. In Proc. SPAA, pages 69-79, 2019. URL: https://doi.org/10.1145/3323165.3323195.
  3. John Augustine, Anisur Rahaman Molla, Ehab Morsy, Gopal Pandurangan, Peter Robinson, and Eli Upfal. Storage and search in dynamic peer-to-peer networks. In Proc. SPAA, pages 53-62, 2013. URL: https://doi.org/10.1145/2486159.2486170.
  4. John Augustine, Gopal Pandurangan, and Peter Robinson. Fast byzantine agreement in dynamic networks. In Proc. PODC, pages 74-83, 2013. URL: https://doi.org/10.1145/2484239.2484275.
  5. John Augustine, Gopal Pandurangan, and Peter Robinson. Fast byzantine leader election in dynamic networks. In Proc. DISC, pages 276-291, 2015. URL: https://doi.org/10.1007/978-3-662-48653-5_19.
  6. John Augustine, Gopal Pandurangan, Peter Robinson, Scott T. Roche, and Eli Upfal. Enabling robust and efficient distributed computation in dynamic peer-to-peer networks. In Proc. FOCS, pages 350-369, 2015. URL: https://doi.org/10.1109/FOCS.2015.29.
  7. John Augustine and Sumathi Sivasubramaniam. Spartan: A framework for sparse robust addressable networks. In Proc. IPDPS, pages 1060-1069, 2018. URL: https://doi.org/10.1109/IPDPS.2018.00115.
  8. Tugkan Batu, Amitabh Trehan, and Chhaya Trehan. All you need are random walks: Fast and simple distributed conductance testing. In Proc. SIROCCO, pages 64-82, 2024. URL: https://doi.org/10.1007/978-3-031-60603-8_4.
  9. Petra Berenbrink, George Giakkoupis, and Peter Kling. Tight bounds for coalescing-branching random walks on regular graphs. In Proc. SODA, pages 1715-1733, 2018. URL: https://doi.org/10.1137/1.9781611975031.112.
  10. Keren Censor-Hillel, Eldar Fischer, Gregory Schwartzman, and Yadu Vasudev. Fast distributed algorithms for testing graph properties. Distributed Comput., 32(1):41-57, 2019. URL: https://doi.org/10.1007/S00446-018-0324-8.
  11. Keren Censor-Hillel, Dean Leitersdorf, and Volodymyr Polosukhin. On sparsity awareness in distributed computations. In Proc. SPAA, pages 151-161, 2021. URL: https://doi.org/10.1145/3409964.3461798.
  12. Yi-Jun Chang, Shang-En Huang, and Hsin-Hao Su. Deterministic expander routing: Faster and more versatile. In Proc. PODC, pages 194-204, 2024. URL: https://doi.org/10.1145/3662158.3662797.
  13. Yi-Jun Chang, Seth Pettie, Thatchaphol Saranurak, and Hengjie Zhang. Near-optimal distributed triangle enumeration via expander decompositions. J. ACM, 68(3):21:1-21:36, 2021. URL: https://doi.org/10.1145/3446330.
  14. Yi-Jun Chang and Thatchaphol Saranurak. Deterministic distributed expander decomposition and routing with applications in distributed derandomization. In Proc. FOCS, pages 377-388, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00043.
  15. Moses Charikar, Tom Leighton, Shi Li, and Ankur Moitra. Vertex sparsifiers and abstract rounding algorithms. In Proc. FOCS, pages 265-274, 2010. URL: https://doi.org/10.1109/FOCS.2010.32.
  16. Soumyottam Chatterjee, Gopal Pandurangan, and Nguyen Dinh Pham. Distributed MST: A smoothed analysis. In Proc. ICDCN, pages 15:1-15:10, 2020. URL: https://doi.org/10.1145/3369740.3369778.
  17. Yu Chen and Zihan Tan. On (1 + ε)-approximate flow sparsifiers. In Proc. SODA, pages 279-293, 2024. URL: https://doi.org/10.1137/1.9781611977912.63.
  18. Julia Chuzhoy. On vertex sparsifiers with steiner nodes. In Proc. STOC, pages 673-688, 2012. URL: https://doi.org/10.1145/2213977.2214039.
  19. Colin Cooper, Tomasz Radzik, and Nicolas Rivera. The coalescing-branching random walk on expanders and the dual epidemic process. In Proc. PODC, pages 461-467, 2016. URL: https://doi.org/10.1145/2933057.2933119.
  20. Colin Cooper, Tomasz Radzik, and Nicolas Rivera. Improved cover time bounds for the coalescing-branching random walk on graphs. In Proc. SPAA, pages 305-312, 2017. URL: https://doi.org/10.1145/3087556.3087564.
  21. Maximilian Drees, Robert Gmyr, and Christian Scheideler. Churn- and dos-resistant overlay networks based on network reconfiguration. In Proc. SPAA, pages 417-427, 2016. URL: https://doi.org/10.1145/2935764.2935783.
  22. Chinmoy Dutta, Gopal Pandurangan, Rajmohan Rajaraman, and Scott T. Roche. Coalescing-branching random walks on graphs. In Proc. SPAA, pages 176-185, 2013. URL: https://doi.org/10.1145/2486159.2486197.
  23. Chinmoy Dutta, Gopal Pandurangan, Rajmohan Rajaraman, and Scott T. Roche. Coalescing-branching random walks on graphs. ACM Trans. Parallel Comput., 2(3):20:1-20:29, 2015. URL: https://doi.org/10.1145/2817830.
  24. Matthias Englert, Anupam Gupta, Robert Krauthgamer, Harald Räcke, Inbal Talgam-Cohen, and Kunal Talwar. Vertex sparsifiers: New results from old techniques. In Proc. APPROX-RANDOM, pages 152-165, 2010. URL: https://doi.org/10.1007/978-3-642-15369-3_12.
  25. Laurent Feuilloley, Juho Hirvonen, and Jukka Suomela. Locally optimal load balancing. In Proc. DISC, pages 544-558, 2015. URL: https://doi.org/10.1007/978-3-662-48653-5_36.
  26. Hendrik Fichtenberger and Yadu Vasudev. A two-sided error distributed property tester for conductance. In Proc. MFCS, pages 19:1-19:15, 2018. URL: https://doi.org/10.4230/LIPICS.MFCS.2018.19.
  27. Abraham D. Flaxman. Expansion and lack thereof in randomly perturbed graphs. Internet Math., 4(2):131-147, 2007. URL: https://doi.org/10.1080/15427951.2007.10129290.
  28. Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In Proc. SODA, pages 270-277, 2016. URL: https://doi.org/10.1137/1.9781611974331.CH20.
  29. Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II: low-congestion shortcuts, mst, and min-cut. In Proc. SODA, pages 202-219, 2016. URL: https://doi.org/10.1137/1.9781611974331.CH16.
  30. Mohsen Ghaffari, Bernhard Haeupler, and Goran Zuzic. Hop-constrained oblivious routing. In Proc. STOC, pages 1208-1220, 2021. URL: https://doi.org/10.1145/3406325.3451098.
  31. Mohsen Ghaffari, Fabian Kuhn, and Hsin-Hao Su. Distributed MST and routing in almost mixing time. In Proc. PODC, pages 131-140, 2017. URL: https://doi.org/10.1145/3087801.3087827.
  32. Mohsen Ghaffari and Jason Li. New distributed algorithms in almost mixing time via transformations from parallel algorithms. In Proc. DISC, pages 31:1-31:16, 2018. URL: https://doi.org/10.4230/LIPICS.DISC.2018.31.
  33. George Giakkoupis, Frederik Mallmann-Trenn, and Hayk Saribekyan. How to spread a rumor: Call your neighbors or take a walk? In Proc. PODC, pages 24-33, 2019. URL: https://doi.org/10.1145/3293611.3331622.
  34. George Giakkoupis, Hayk Saribekyan, and Thomas Sauerwald. Spread of information and diseases via random walks in sparse graphs. In Proc. DISC, pages 9:1-9:17, 2020. URL: https://doi.org/10.4230/LIPICS.DISC.2020.9.
  35. Seth Gilbert, Gopal Pandurangan, Peter Robinson, and Amitabh Trehan. Dconstructor: Efficient and robust network construction with polylogarithmic overhead. In Proc. PODC, pages 438-447, 2020. URL: https://doi.org/10.1145/3382734.3405716.
  36. Seth Gilbert, Peter Robinson, and Suman Sourav. Leader election in well-connected graphs. Algorithmica, 85(4):1029-1066, 2023. URL: https://doi.org/10.1007/S00453-022-01068-X.
  37. Rachid Guerraoui, Florian Huc, and Anne-Marie Kermarrec. Highly dynamic distributed computing with byzantine failures. In Proc. PODC, pages 176-183, 2013. URL: https://doi.org/10.1145/2484239.2484263.
  38. Bernhard Haeupler and Dahlia Malkhi. Distributed resource discovery in sub-logarithmic time. In Proc. PODC, pages 413-419, 2015. URL: https://doi.org/10.1145/2767386.2767435.
  39. Bernhard Haeupler, Gopal Pandurangan, David Peleg, Rajmohan Rajaraman, and Zhifeng Sun. Discovery through gossip. In Proc. SPAA, pages 140-149, 2012. URL: https://doi.org/10.1145/2312005.2312031.
  40. Bernhard Haeupler, Harald Räcke, and Mohsen Ghaffari. Hop-constrained expander decompositions, oblivious routing, and distributed universal optimality. In Proc. STOC, pages 1325-1338, 2022. URL: https://doi.org/10.1145/3519935.3520026.
  41. Bernhard Haeupler, David Wajc, and Goran Zuzic. Universally-optimal distributed algorithms for known topologies. In Proc. STOC, pages 1166-1179, 2021. URL: https://doi.org/10.1145/3406325.3451081.
  42. Stephan Holzer and Roger Wattenhofer. Optimal distributed all pairs shortest paths and applications. In Proc. PODC, pages 355-364, 2012. URL: https://doi.org/10.1145/2332432.2332504.
  43. Anna R. Karlin and Eli Upfal. Parallel hashing: an efficient implementation of shared memory. J. ACM, 35(4):876-892, 1988. URL: https://doi.org/10.1145/48014.350550.
  44. Robert Krauthgamer and Ron Mosenzon. Exact flow sparsification requires unbounded size. In Proc. SODA, pages 2354-2367, 2023. URL: https://doi.org/10.1137/1.9781611977554.CH91.
  45. Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, and Amitabh Trehan. Sublinear bounds for randomized leader election. Theor. Comput. Sci., 561:134-143, 2015. URL: https://doi.org/10.1016/J.TCS.2014.02.009.
  46. Jakub Lacki, Slobodan Mitrovic, Krzysztof Onak, and Piotr Sankowski. Walking randomly, massively, and efficiently. In Proc. STOC, pages 364-377, 2020. URL: https://doi.org/10.1145/3357713.3384303.
  47. Ching Law and Kai-Yeung Siu. Distributed construction of random expander networks. In Proc. INFOCOM, pages 2133-2143, 2003. URL: https://doi.org/10.1109/INFCOM.2003.1209234.
  48. Frank Thomson Leighton, Bruce M. Maggs, and Satish Rao. Universal packet routing algorithms (extended abstract). In Proc. FOCS, pages 256-269, 1988. URL: https://doi.org/10.1109/SFCS.1988.21942.
  49. Frank Thomson Leighton and Ankur Moitra. Extensions and limits to vertex sparsification. In Proc. STOC, pages 47-56, 2010. URL: https://doi.org/10.1145/1806689.1806698.
  50. Christoph Lenzen and Boaz Patt-Shamir. Improved distributed steiner forest construction. In Proc. PODC, pages 262-271, 2014. URL: https://doi.org/10.1145/2611462.2611464.
  51. David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains and Mixing Times. Amer. Math. Soc., 2nd edition, 2017. URL: https://pages.uoregon.edu/dlevin/MARKOV/.
  52. Konstantin Makarychev and Yury Makarychev. Metric extension operators, vertex sparsifiers and lipschitz extendability. In Proc. FOCS, pages 255-264, 2010. URL: https://doi.org/10.1109/FOCS.2010.31.
  53. Laurent Massoulié, Erwan Le Merrer, Anne-Marie Kermarrec, and Ayalvadi J. Ganesh. Peer counting and sampling in overlay networks: random walk methods. In Proc. PODC, pages 123-132, 2006. URL: https://doi.org/10.1145/1146381.1146402.
  54. Michael Mitzenmacher, Rajmohan Rajaraman, and Scott T. Roche. Better bounds for coalescing-branching random walks. In Proc. SPAA, pages 313-323, 2016. URL: https://doi.org/10.1145/2935764.2935791.
  55. Michael Mitzenmacher, Rajmohan Rajaraman, and Scott T. Roche. Better bounds for coalescing-branching random walks. ACM Trans. Parallel Comput., 5(1):2:1-2:23, 2018. URL: https://doi.org/10.1145/3209688.
  56. Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005. URL: https://doi.org/10.1017/CBO9780511813603.
  57. Ankur Moitra. Approximation algorithms for multicommodity-type problems with guarantees independent of the graph size. In Proc. FOCS, pages 3-12, 2009. URL: https://doi.org/10.1109/FOCS.2009.28.
  58. Ankur Moitra. Vertex sparsification and universal rounding algorithms. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2011. URL: https://hdl.handle.net/1721.1/66019.
  59. Anisur Rahaman Molla and Gopal Pandurangan. Distributed computation of mixing time. In Proc. ICDCN, page 5, 2017. URL: http://dl.acm.org/citation.cfm?id=3007784.
  60. Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. A time- and message-optimal distributed algorithm for minimum spanning trees. In Proc. STOC, pages 743-756, 2017. URL: https://doi.org/10.1145/3055399.3055449.
  61. David Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000. URL: https://doi.org/10.1137/1.9780898719772.
  62. Harald Räcke. Minimizing congestion in general networks. In Proc. FOCS, pages 43-52, 2002. URL: https://doi.org/10.1109/SFCS.2002.1181881.
  63. Harald Räcke. Optimal hierarchical decompositions for congestion minimization in networks. In Proc. STOC, pages 255-264, 2008. URL: https://doi.org/10.1145/1374376.1374415.
  64. Abhiram G. Ranade. How to emulate shared memory. J. Comput. Syst. Sci., 42(3):307-326, 1991. URL: https://doi.org/10.1016/0022-0000(91)90005-P.
  65. Parikshit Saikia and Sushanta Karmakar. Improved distributed approximation for steiner tree in the CONGEST model. J. Parallel Distributed Comput., 158:196-212, 2021. URL: https://doi.org/10.1016/J.JPDC.2021.08.004.
  66. Atish Das Sarma, Anisur Rahaman Molla, and Gopal Pandurangan. Fast distributed computation in dynamic networks via random walks. In Proc. DISC, pages 136-150, 2012. URL: https://doi.org/10.1007/978-3-642-33651-5_10.
  67. Hsin-Hao Su and Hoa T. Vu. Distributed data summarization in well-connected networks. In Proc. DISC, pages 33:1-33:16, 2019. URL: https://doi.org/10.4230/LIPICS.DISC.2019.33.
  68. Leslie G. Valiant and Gordon J. Brebner. Universal schemes for parallel communication. In Proc. STOC, pages 263-277, 1981. URL: https://doi.org/10.1145/800076.802479.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail