Efficient Shape Formation by 3D Hybrid Programmable Matter: An Algorithm for Low Diameter Intermediate Structures

Authors Kristian Hinnenthal , David Liedtke , Christian Scheideler



PDF
Thumbnail PDF

File

LIPIcs.SAND.2024.15.pdf
  • Filesize: 2.12 MB
  • 20 pages

Document Identifiers

Author Details

Kristian Hinnenthal
  • Paderborn University, Germany
David Liedtke
  • Paderborn University, Germany
Christian Scheideler
  • Paderborn University, Germany

Cite AsGet BibTex

Kristian Hinnenthal, David Liedtke, and Christian Scheideler. Efficient Shape Formation by 3D Hybrid Programmable Matter: An Algorithm for Low Diameter Intermediate Structures. In 3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 292, pp. 15:1-15:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SAND.2024.15

Abstract

This paper considers the shape formation problem within the 3D hybrid model, where a single agent with a strictly limited viewing range and the computational capacity of a deterministic finite automaton manipulates passive tiles through pick-up, movement, and placement actions. The goal is to reconfigure a set of tiles into a specific shape termed an icicle. The icicle, identified as a dense, hole-free structure, is strategically chosen to function as an intermediate shape for more intricate shape formation tasks. It is designed for easy exploration by a finite state agent, enabling the identification of tiles that can be lifted without breaking connectivity. Compared to the line shape, the icicle presents distinct advantages, including a reduced diameter and the presence of multiple removable tiles. We propose an algorithm that transforms an arbitrary initially connected tile structure into an icicle in 𝒪(n³) steps, matching the runtime of the line formation algorithm from prior work. Our theoretical contribution is accompanied by an extensive experimental analysis, indicating that our algorithm decreases the diameter of tile structures on average.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
Keywords
  • Programmable Matter
  • Shape Formation
  • 3D Model
  • Finite Automaton

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. M. Akter, J. J. Keya, K. Kayano, A. M. R. Kabir, D. Inoue, H. Hess, K. Sada, A. Kuzuya, H. Asanuma, and A. Kakugo. Cooperative cargo transportation by a swarm of molecular machines. Science Robotics, 7(65), 2022. URL: https://doi.org/10.1126/scirobotics.abm0677.
  2. D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in networks of passively mobile finite-state sensors. Distributed Computing, 18(4), March 2006. URL: https://doi.org/10.1007/s00446-005-0138-3.
  3. M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier to search than graphs). In 19th Annual Symposium on Foundations of Computer Science (sfcs 1978), 1978. URL: https://doi.org/10.1109/SFCS.1978.30.
  4. J. Chao, J. Wang, F. Wang, X. Ouyang, E. Kopperger, H. Liu, Q. Li, J. Shi, J. hu, L. Wang, W. Huang, F. Simmel, and C. Fan. Solving mazes with single-molecule dna navigators. Nature Materials, 18, March 2019. URL: https://doi.org/10.1038/s41563-018-0205-3.
  5. H. Chen, C. Li, M. Mafarja, A. A. Heidari, Y. Chen, and Z. Cai. Slime mould algorithm: a comprehensive review of recent variants and applications. International Journal of Systems Science, 54(1), 2023. URL: https://doi.org/10.1080/00207721.2022.2153635.
  6. G.S. Chirikjian. Kinematics of a metamorphic robotic system. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994. URL: https://doi.org/10.1109/ROBOT.1994.351256.
  7. Z. Derakhshandeh, S. Dolev, R. Gmyr, A. W. Richa, C. Scheideler, and T. Strothmann. Amoebot - a new model for programmable matter. In Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures, 2014. URL: https://doi.org/10.1145/2612669.2612712.
  8. Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and T. Strothmann. An algorithmic framework for shape formation problems in self-organizing particle systems. In Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication, 2015. URL: https://doi.org/10.1145/2800795.2800829.
  9. Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and T. Strothmann. Universal shape formation for programmable matter. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, 2016. URL: https://doi.org/10.1145/2935764.2935784.
  10. G. A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and Y. Yamauchi. Shape formation by programmable particles. Distrib. Comput., 33(1), February 2020. URL: https://doi.org/10.1007/s00446-019-00350-6.
  11. P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph exploration by a finite automaton. In Mathematical Foundations of Computer Science 2004, 2004. Google Scholar
  12. R. Gmyr, K. Hinnenthal, I. Kostitsyna, F. Kuhn, D. Rudolph, and C. Scheideler. Shape recognition by a finite automaton robot. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018), volume 117, 2018. URL: https://doi.org/10.4230/LIPIcs.MFCS.2018.52.
  13. R. Gmyr, K. Hinnenthal, I. Kostitsyna, F. Kuhn, D. Rudolph, C. Scheideler, and T. Strothmann. Forming tile shapes with simple robots. Natural Computing, 19(2), June 2020. URL: https://doi.org/10.1007/s11047-019-09774-2.
  14. A. Heuer-Jungemann and T. Liedl. From dna tiles to functional dna materials. Trends in Chemistry, 1(9), 2019. URL: https://doi.org/10.1016/j.trechm.2019.07.006.
  15. K. Hinnenthal, D. Liedtke, and C. Scheideler. Efficient shape formation by 3d hybrid programmable matter: An algorithm for low diameter intermediate structures, 2024. Google Scholar
  16. K. Hinnenthal, D. Rudolph, and C. Scheideler. Shape formation in a three-dimensional model for hybrid programmable matter. In Proc. of the 36th European Workshop on Computational Geometry (EuroCG 2020), 2020. Google Scholar
  17. F. Hoffmann. One pebble does not suffice to search plane labyrinths. In International Conference on Fundamentals of Computation Theory, 1981. Google Scholar
  18. F. Hurtado, E. Molina, S. Ramaswami, and V. Sacristán. Distributed reconfiguration of 2d lattice-based modular robotic systems. Autonomous Robots, 38(4), April 2015. URL: https://doi.org/10.1007/s10514-015-9421-8.
  19. I. Kostitsyna, D. Liedtke, and C. Scheideler. Universal coating in the 3d hybrid model, 2023. URL: https://doi.org/10.48550/arXiv.2303.16180.
  20. I. Kostitsyna, C. Scheideler, and D. Warner. Fault-tolerant shape formation in the amoebot model. In 28th International Conference on DNA Computing and Molecular Programming (DNA 28), 2022. URL: https://doi.org/10.4230/LIPIcs.DNA.28.9.
  21. G. Li, D. St-Onge, C. Pinciroli, A. Gasparri, E. Garone, and G. Beltrame. Decentralized progressive shape formation with robot swarms. Autonomous Robots, 43(6), August 2019. URL: https://doi.org/10.1007/s10514-018-9807-5.
  22. H. Li, J. Gao, L. Cao, X. Xie, J. Fan, H. Wang, H. Wang, and Z. Nie. A dna molecular robot autonomously walking on the cell membrane to drive the cell motility. Angewandte Chemie International Edition, 60, September 2021. URL: https://doi.org/10.1002/anie.202108210.
  23. N. Nokhanji, P. Flocchini, and N. Santoro. Fully dynamic line maintenance by hybrid programmable matter. In 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2022. URL: https://doi.org/10.1109/IPDPSW55747.2022.00087.
  24. A. Padalkin, M. Kumar, and C. Scheideler. Shape formation and locomotion with joint movements in the amoebot model. ArXiv, abs/2305.06146, 2023. Google Scholar
  25. M. J. Patitz. An introduction to tile-based self-assembly and a survey of recent results. Natural Computing, 13(2), June 2014. URL: https://doi.org/10.1007/s11047-013-9379-4.
  26. T. Peters, I. Kostitsyna, and B. Speckmann. Fast reconfiguration for programmable matter. In 37th International Symposium on Distributed Computing, DISC 2023, 2023. URL: https://doi.org/10.4230/LIPIcs.DISC.2023.27.
  27. N. Tan, A. A. Hayat, M. R. Elara, and K. L. Wood. A framework for taxonomy and evaluation of self-reconfigurable robotic systems. IEEE Access, 8, 2020. URL: https://doi.org/10.1109/ACCESS.2020.2965327.
  28. P. Thalamy, B. Piranda, and J. Bourgeois. A survey of autonomous self-reconfiguration methods for robot-based programmable matter. Robotics and Autonomous Systems, 120, 2019. URL: https://doi.org/10.1016/j.robot.2019.07.012.
  29. A. J. Thubagere, W. Li, R. F. Johnson, Z. Chen, S. Doroudi, Y. L. Lee, G. Izatt, S. Wittman, N. Srinivas, D. Woods, E. Winfree, and L. Qian. A cargo-sorting dna robot. Science, 357(6356), 2017. URL: https://doi.org/10.1126/science.aan6558.
  30. T. Tucci, B. Piranda, and J. Bourgeois. A distributed self-assembly planning algorithm for modular robots. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, 2018. Google Scholar
  31. J. E. Walter, J. L. Welch, and N. M. Amato. Distributed reconfiguration of metamorphic robot chains. Distributed Computing, 17(2), August 2004. URL: https://doi.org/10.1007/s00446-003-0103-y.
  32. H. Wang and M. Rubenstein. Shape formation in homogeneous swarms using local task swapping. IEEE Transactions on Robotics, 36(3), 2020. URL: https://doi.org/10.1109/TRO.2020.2967656.
  33. J. Werfel, K. Petersen, and R. Nagpal. Designing collective behavior in a termite-inspired robot construction team. Science, 343(6172), 2014. URL: https://doi.org/10.1126/science.1245842.
  34. D. Woods, H. Chen, S. Goodfriend, N. Dabby, E. Winfree, and P. Yin. Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, 2013. URL: https://doi.org/10.1145/2422436.2422476.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail