Complexity of Boolean Automata Networks Under Block-Parallel Update Modes

Authors Kévin Perrot, Sylvain Sené, Léah Tapin



PDF
Thumbnail PDF

File

LIPIcs.SAND.2024.19.pdf
  • Filesize: 0.95 MB
  • 19 pages

Document Identifiers

Author Details

Kévin Perrot
  • Université publique, Marseille, France
  • Aix-Marseille Univ, CNRS, LIS, Marseille, France
Sylvain Sené
  • Université publique, Marseille, France
  • Aix-Marseille Univ, CNRS, LIS, Marseille, France
Léah Tapin
  • Aix-Marseille Univ, CNRS, LIS, Marseille, France

Acknowledgements

This work received support from ANR-18-CE40-0002 FANs, STIC AmSud CAMA 22-STIC-02 (Campus France MEAE) and HORIZON-MSCA-2022-SE-01-101131549 ACANCOS projects.

Cite AsGet BibTex

Kévin Perrot, Sylvain Sené, and Léah Tapin. Complexity of Boolean Automata Networks Under Block-Parallel Update Modes. In 3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 292, pp. 19:1-19:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SAND.2024.19

Abstract

Boolean automata networks (aka Boolean networks) are space-time discrete dynamical systems, studied as a model of computation and as a representative model of natural phenomena. A collection of simple entities (the automata) update their 0-1 states according to local rules. The dynamics of the network is highly sensitive to update modes, i.e., to the schedule according to which the automata apply their local rule. A new family of update modes appeared recently, called block-parallel, which is dual to the well studied block-sequential. Although basic, it embeds the rich feature of update repetitions among a temporal updating period, allowing for atypical asymptotic behaviors. In this paper, we prove that it is able to breed complex computations, squashing almost all decision problems on the dynamics to the traditionally highest (for reachability questions) class PSPACE. Despite obtaining these complexity bounds for a broad set of local and global properties, we also highlight a surprising gap: bijectivity is still coNP.

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed computing models
  • Theory of computation → Problems, reductions and completeness
Keywords
  • Boolean networks
  • finite dynamical systems
  • block-parallel update schedule

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. T. Akutsu, S. Miyano, and S. Kuhara. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In Proceedings of the Pacific Symposium on Biocomputing, pages 17-28. Wold Scientific, 1999. Google Scholar
  2. N. Alon. Asynchronous threshold networks. Graphs and Combinatorics, 1:305-310, 1985. URL: https://doi.org/10.1007/BF02582959.
  3. J. Aracena, J. Demongeot, É. Fanchon, and M. Montalva. On the number of different dynamics in Boolean networks with deterministic update schedules. Mathematical Biosciences, 242:188-194, 2013. URL: https://doi.org/10.1016/j.mbs.2013.01.007.
  4. J. Aracena, É. Fanchon, M. Montalva, and M. Noual. Combinatorics on update digraphs in Boolean networks. Discrete Applied Mathematics, 159:401-409, 2011. Google Scholar
  5. J. Aracena, E. Goles, A. Moreira, and L. Salinas. On the robustness of update schedules in Boolean networks. Biosystems, 97:1-8, 2009. Google Scholar
  6. J. Aracena, L. Gómez, and L. Salinas. Limit cycles and update digraphs in Boolean networks. Discrete Applied Mathematics, 161:1-12, 2013. Google Scholar
  7. A. Benecke. Chromatin code, local non-equilibrium dynamics, and the emergence of transcription regulatory programs. The European Physical Journal E, 19:353-366, 2006. Google Scholar
  8. F. Bridoux, C. Gaze-Maillot, K. Perrot, and S. Sené. Complexity of Limit-Cycle Problems in Boolean Networks. In Proceedings of SOFSEM'2021, volume 12607 of LNCS, pages 135-146. Springer, 2021. Google Scholar
  9. F. Bridoux, P. Guillon, K. Perrot, S. Sené, and G. Theyssier. On the cost of simulating a parallel boolean automata network by a block-sequential one. In Proceedings of TAMC'2017, volume 10185 of LNCS, pages 112-128, 2017. URL: https://doi.org/10.1007/978-3-319-55911-7_9.
  10. S. Datta, N. Limaye, P. Nimbhorkar, T. Thierauf, and F. Wagner. Planar Graph Isomorphism is in Log-Space. In Algebraic Methods in Computational Complexity, volume 9421, pages 1-32. Schloss Dagstuhl, 2010. URL: https://doi.org/10.4230/DagSemProc.09421.6.
  11. J. Demongeot, A. Elena, and S. Sené. Robustness in regulatory networks: a multi-disciplinary approach. Acta Biotheoretica, 56:27-49, 2008. Google Scholar
  12. J. Demongeot and S. Sené. About block-parallel Boolean networks: a position paper. Natural Computing, 19:5-13, 2020. Google Scholar
  13. A. Dennunzio, E. Formenti, L. Manzoni, and A. E. Porreca. Complexity of the dynamics of reaction systems. Information and Computation, 267:96-109, 2019. Google Scholar
  14. B. Elspas. The theory of autonomous linear sequential networks. IRE Transactions on Circuit Theory, 6:45-60, 1959. Google Scholar
  15. David Eppstein. The Complexity of Iterated Reversible Computation. TheoretiCS, 2, 2023. URL: https://doi.org/10.46298/theoretics.23.10.
  16. B. Fierz and M. G. Poirier. Biophysics of chromatin dynamics. Annual Review of Biophysics, 48:321-345, 2019. Google Scholar
  17. P. Floréen and P. Orponen. On the computational complexity of analyzing Hopfield nets. Complex Systems, 3:577-587, 1989. Google Scholar
  18. G. Gamard, P. Guillon, K. Perrot, and G. Theyssier. Rice-like theorems for automata networks. In Proceedings of STACS'21, volume 187 of LIPIcs, pages 32:1-32:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. Google Scholar
  19. C. E. Giacomantonio and G. J. Goodhill. A Boolean model of the gene regulatory network underlying mammalian cortical area development. PLoS Computational Biology, 6:e1000936, 2010. Google Scholar
  20. E. Goles and S. Martínez. Neural and automata networks: dynamical behavior and applications, volume 58 of Mathematics and Its Applications. Kluwer Academic Publishers, 1990. Google Scholar
  21. E. Goles, P. Montealegre, V. Salo, and I. Törmä. PSPACE-completeness of majority automata networks. Theoretical Computer Science, 609:118-128, 2016. URL: https://doi.org/10.1016/j.tcs.2015.09.014.
  22. E. Goles and M. Noual. Block-sequential update schedules and Boolean automata circuits. In Proceedings of AUTOMATA'2010, pages 41-50. DMTCS, 2010. Google Scholar
  23. E. Goles and L. Salinas. Comparison between parallel and serial dynamics of Boolean networks. Theoretical Computer Science, 396:247-253, 2008. Google Scholar
  24. J. C. Hanse and J. Ausio. Chromatin dynamics and the modulation of genetic activity. Trends in Biochemical Sciences, 17:187-191, 1992. Google Scholar
  25. M. R. Hübner and D. L. Spector. Chromatin dynamics. Annual Review of Biophysics, 39:471-489, 2010. Google Scholar
  26. D. A. Huffman. Canonical forms for information-lossless finite-state logical machines. IRE Transactions on Information Theory, 5:41-59, 1959. Google Scholar
  27. J. Kari. Reversible cellular automata. In Proceedings of DLT'2005, volume 3572 of LNCS, pages 57-68. Springer, 2005. URL: https://doi.org/10.1007/11505877_5.
  28. S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 22:437-467, 1969. Google Scholar
  29. J. Köbler and S. Toda. On the power of generalized Mod-classes. Mathematical Systems Theory, 29:33-46, 1996. URL: https://doi.org/10.1007/BF01201812.
  30. R. E. Ladner. Polynomial Space Counting Problems. SIAM Journal on Computing, 18(6):1087-1097, 1989. URL: https://doi.org/10.1137/0218073.
  31. K.-J. Lange, P. McKenzie, and A. Tapp. Reversible Space Equals Deterministic Space. Journal of Computer and System Sciences, 60(2):354-367, 2000. URL: https://doi.org/10.1006/jcss.1999.1672.
  32. W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. Journal of Mathematical Biophysics, 5:115-133, 1943. Google Scholar
  33. L. Mendoza and E. R. Alvarez-Buylla. Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. Journal of Theoretical Biology, 193:307-319, 1998. Google Scholar
  34. K. Morita. Theory of Reversible Computing. Springer, first edition, 2017. URL: https://doi.org/10.1007/978-4-431-56606-9.
  35. K. Perrot. Études de la complexité algorithmique des réseaux d'automates. Habilitation thesis, Université d'Aix-Marseille, 2022. Google Scholar
  36. K. Perrot, S. Sené, and L. Tapin. Combinatorics of block-parallel automata networks. In Proceedings of SOFSEM'24, LNCS. Springer, 2024. To appear. Google Scholar
  37. P. Perrotin and S. Sené. Turning block-sequential automata networks into smaller parallel networks with isomorphic limit dynamics. In Proceedings of CiE'23, LNCS. Springer, 2023. To appear. Google Scholar
  38. F. Robert. Discrete iterations: a metric study, volume 6 of Springer Series in Computational Mathematics. Springer, 1986. Google Scholar
  39. F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65:386-408, 1958. Google Scholar
  40. K. Sutner. On the Computational Complexity of Finite Cellular Automata. Journal of Computer and System Sciences, 50(1):87-97, 1995. URL: https://doi.org/10.1006/jcss.1995.1009.
  41. K. Sutner. The complexity of reversible cellular automata. Theoretical Computer Science, 325(2):317-328, 2004. URL: https://doi.org/10.1016/j.tcs.2004.06.011.
  42. R. Thomas. Boolean formalization of genetic control circuits. Journal of Theoretical Biology, 42:563-585, 1973. Google Scholar
  43. D. J. Wooten, S. M. Groves, D. R. Tyson, Q. Liu, J. S. Lim, R. Albert, C. F. Lopez, J. Sage, and V. Quaranta. Systems-level network modeling of small cell lung cancer subtypes identifies master regulators and destabilizers. PLoS Computational Biology, 15:e1007343, 2019. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail