Strategy Extraction by Interpolation

Author Friedrich Slivovsky



PDF
Thumbnail PDF

File

LIPIcs.SAT.2024.28.pdf
  • Filesize: 0.84 MB
  • 20 pages

Document Identifiers

Author Details

Friedrich Slivovsky
  • Department of Computer Science, University of Liverpool, UK

Cite AsGet BibTex

Friedrich Slivovsky. Strategy Extraction by Interpolation. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 28:1-28:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SAT.2024.28

Abstract

In applications, QBF solvers are often required to generate strategies. This typically involves a process known as strategy extraction, where a Boolean circuit encoding a strategy is computed from a proof. It has previously been observed that Craig interpolation in propositional logic can be seen as a special case of QBF strategy extraction. In this paper we explore this connection further and show that, conversely, any strategy for a false QBF corresponds to a sequence of interpolants in its complete (Herbrand) expansion. Inspired by this correspondence, we present a new strategy extraction algorithm for the expansion-based proof system Exp+Res. Its asymptotic running time matches the best known bound of O(mn) for a proof with m lines and n universally quantified variables. We report on experiments comparing this algorithm with a strategy extraction algorithm based on combining partial strategies, as well as with round-based strategy extraction.

Subject Classification

ACM Subject Classification
  • Theory of computation → Automated reasoning
Keywords
  • QBF
  • Expansion
  • Strategy Extraction
  • Interpolation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. An exponential separation between regular and general resolution. Theory Comput., 3(1):81-102, 2007. URL: https://doi.org/10.4086/TOC.2007.V003A005.
  2. Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF certification and its applications. Formal Methods Syst. Des., 41(1):45-65, 2012. URL: https://doi.org/10.1007/S10703-012-0152-6.
  3. Valeriy Balabanov, Jie-Hong Roland Jiang, Mikolas Janota, and Magdalena Widl. Efficient extraction of QBF (counter)models from long-distance resolution proofs. In Blai Bonet and Sven Koenig, editors, Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA, pages 3694-3701. AAAI Press, 2015. URL: https://doi.org/10.1609/AAAI.V29I1.9750.
  4. Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan, and Tomás Peitl. Hardness characterisations and size-width lower bounds for QBF resolution. ACM Trans. Comput. Log., 24(2):10:1-10:30, 2023. URL: https://doi.org/10.1145/3565286.
  5. Olaf Beyersdorff, Leroy Chew, and Mikolás Janota. New resolution-based QBF calculi and their proof complexity. ACM Trans. Comput. Theory, 11(4):26:1-26:42, 2019. URL: https://doi.org/10.1145/3352155.
  6. Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. Feasible interpolation for QBF resolution calculi. Log. Methods Comput. Sci., 13(2), 2017. URL: https://doi.org/10.23638/LMCS-13(2:7)2017.
  7. Armin Biere. Picosat essentials. J. Satisf. Boolean Model. Comput., 4(2-4):75-97, 2008. URL: https://doi.org/10.3233/SAT190039.
  8. Armin Biere, Mathias Fleury, Nils Froleyks, and Marijn J. H. Heule. The SAT museum. In Matti Järvisalo and Daniel Le Berre, editors, Proceedings of the 14th International Workshop on Pragmatics of SAT co-located with the 26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023), Alghero, Italy, July 4, 2023, volume 3545 of CEUR Workshop Proceedings, pages 72-87. CEUR-WS.org, 2023. URL: https://ceur-ws.org/Vol-3545/paper6.pdf.
  9. Roderick Bloem, Nicolas Braud-Santoni, Vedad Hadzic, Uwe Egly, Florian Lonsing, and Martina Seidl. Two SAT solvers for solving quantified boolean formulas with an arbitrary number of quantifier alternations. Formal Methods Syst. Des., 57(2):157-177, 2021. URL: https://doi.org/10.1007/S10703-021-00371-7.
  10. Roderick Bloem, Uwe Egly, Patrick Klampfl, Robert Könighofer, and Florian Lonsing. SAT-based methods for circuit synthesis. In Formal Methods in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, October 21-24, 2014, pages 31-34. IEEE, 2014. URL: https://doi.org/10.1109/FMCAD.2014.6987592.
  11. Roderick Bloem, Robert Könighofer, and Martina Seidl. SAT-based synthesis methods for safety specs. In Kenneth L. McMillan and Xavier Rival, editors, Verification, Model Checking, and Abstract Interpretation - 15th International Conference, VMCAI 2014, San Diego, CA, USA, January 19-21, 2014, Proceedings, volume 8318 of Lecture Notes in Computer Science, pages 1-20. Springer, 2014. URL: https://doi.org/10.1007/978-3-642-54013-4_1.
  12. Leroy Chew and Judith Clymo. How QBF expansion makes strategy extraction hard. In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, Automated Reasoning - 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part I, volume 12166 of Lecture Notes in Computer Science, pages 66-82. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-51074-9_5.
  13. Leroy Chew and Friedrich Slivovsky. Towards uniform certification in QBF. In Petra Berenbrink and Benjamin Monmege, editors, 39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022, March 15-18, 2022, Marseille, France (Virtual Conference), volume 219 of LIPIcs, pages 22:1-22:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.STACS.2022.22.
  14. William Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb. Log., 22(3):250-268, 1957. URL: https://doi.org/10.2307/2963593.
  15. Vijay Victor D'Silva, Daniel Kroening, Mitra Purandare, and Georg Weissenbacher. Interpolant strength. In Gilles Barthe and Manuel V. Hermenegildo, editors, Verification, Model Checking, and Abstract Interpretation, 11th International Conference, VMCAI 2010, Madrid, Spain, January 17-19, 2010. Proceedings, volume 5944 of Lecture Notes in Computer Science, pages 129-145. Springer, 2010. https://doi.org/10.1007/978-3-642-11319-2_12.
  16. Vijay Victor D'Silva, Daniel Kroening, and Georg Weissenbacher. A survey of automated techniques for formal software verification. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 27(7):1165-1178, 2008. URL: https://doi.org/10.1109/TCAD.2008.923410.
  17. Uwe Egly, Florian Lonsing, and Magdalena Widl. Long-distance resolution: Proof generation and strategy extraction in search-based QBF solving. In Kenneth L. McMillan, Aart Middeldorp, and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning - 19th International Conference, LPAR-19, Stellenbosch, South Africa, December 14-19, 2013. Proceedings, volume 8312 of Lecture Notes in Computer Science, pages 291-308. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-45221-5_21.
  18. Alexandra Goultiaeva, Allen Van Gelder, and Fahiem Bacchus. A uniform approach for generating proofs and strategies for both true and false QBF formulas. In Toby Walsh, editor, IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 546-553. IJCAI/AAAI, 2011. URL: https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-099.
  19. Vedad Hadzic, Roderick Bloem, Ankit Shukla, and Martina Seidl. FERPModels: A certification framework for expansion-based QBF solving. In Bruno Buchberger, Mircea Marin, Viorel Negru, and Daniela Zaharie, editors, 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2022, Hagenberg / Linz, Austria, September 12-15, 2022, pages 80-83. IEEE, 2022. URL: https://doi.org/10.1109/SYNASC57785.2022.00022.
  20. Georg Hofferek, Ashutosh Gupta, Bettina Könighofer, Jie-Hong Roland Jiang, and Roderick Bloem. Synthesizing multiple boolean functions using interpolation on a single proof. In Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013, pages 77-84. IEEE, 2013. URL: https://ieeexplore.ieee.org/document/6679394/.
  21. Guoxiang Huang. Constructing Craig interpolation formulas. In Ding-Zhu Du and Ming Li, editors, Computing and Combinatorics, First Annual International Conference, COCOON '95, Xi'an, China, August 24-26, 1995, Proceedings, volume 959 of Lecture Notes in Computer Science, pages 181-190. Springer, 1995. URL: https://doi.org/10.1007/BFB0030832.
  22. Mikolas Janota. On exponential lower bounds for partially ordered resolution. J. Satisf. Boolean Model. Comput., 10(1):1-9, 2016. URL: https://doi.org/10.3233/SAT190110.
  23. Mikolás Janota, William Klieber, João Marques-Silva, and Edmund M. Clarke. Solving QBF with counterexample guided refinement. Artif. Intell., 234:1-25, 2016. URL: https://doi.org/10.1016/J.ARTINT.2016.01.004.
  24. Mikolás Janota and João Marques-Silva. Expansion-based QBF solving versus q-resolution. Theor. Comput. Sci., 577:25-42, 2015. URL: https://doi.org/10.1016/J.TCS.2015.01.048.
  25. Jie-Hong Roland Jiang, Hsuan-Po Lin, and Wei-Lun Hung. Interpolating functions from large boolean relations. In Jaijeet S. Roychowdhury, editor, 2009 International Conference on Computer-Aided Design, ICCAD 2009, San Jose, CA, USA, November 2-5, 2009, pages 779-784. ACM, 2009. URL: https://doi.org/10.1145/1687399.1687544.
  26. Laura Kovács and Andrei Voronkov. Interpolation and symbol elimination. In Renate A. Schmidt, editor, Automated Deduction - CADE-22, 22nd International Conference on Automated Deduction, Montreal, Canada, August 2-7, 2009. Proceedings, volume 5663 of Lecture Notes in Computer Science, pages 199-213. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-02959-2_17.
  27. Jan Krajícek. Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. J. Symb. Log., 62(2):457-486, 1997. URL: https://doi.org/10.2307/2275541.
  28. Paolo Mancosu. Introduction: Interpolations - Essays in honor of William Craig. Synth., 164(3):313-319, 2008. URL: https://doi.org/10.1007/S11229-008-9350-6.
  29. Kenneth L. McMillan. Interpolation and SAT-based model checking. In Warren A. Hunt Jr. and Fabio Somenzi, editors, Computer Aided Verification, 15th International Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings, volume 2725 of Lecture Notes in Computer Science, pages 1-13. Springer, 2003. URL: https://doi.org/10.1007/978-3-540-45069-6_1.
  30. Aina Niemetz, Mathias Preiner, Florian Lonsing, Martina Seidl, and Armin Biere. Resolution-based certificate extraction for QBF - (tool presentation). In Alessandro Cimatti and Roberto Sebastiani, editors, Theory and Applications of Satisfiability Testing - SAT 2012 - 15th International Conference, Trento, Italy, June 17-20, 2012. Proceedings, volume 7317 of Lecture Notes in Computer Science, pages 430-435. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-31612-8_33.
  31. Tomás Peitl, Friedrich Slivovsky, and Stefan Szeider. Polynomial-time validation of QCDCL certificates. In Olaf Beyersdorff and Christoph M. Wintersteiger, editors, Theory and Applications of Satisfiability Testing - SAT 2018 - 21st International Conference, SAT 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings, volume 10929 of Lecture Notes in Computer Science, pages 253-269. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-94144-8_16.
  32. Tomás Peitl, Friedrich Slivovsky, and Stefan Szeider. Long-distance Q-resolution with dependency schemes. J. Autom. Reason., 63(1):127-155, 2019. URL: https://doi.org/10.1007/S10817-018-9467-3.
  33. Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symb. Log., 62(3):981-998, 1997. URL: https://doi.org/10.2307/2275583.
  34. Matthias Schlaipfer, Friedrich Slivovsky, Georg Weissenbacher, and Florian Zuleger. Multi-linear strategy extraction for QBF expansion proofs via local soundness. In Luca Pulina and Martina Seidl, editors, Theory and Applications of Satisfiability Testing - SAT 2020 - 23rd International Conference, Alghero, Italy, July 3-10, 2020, Proceedings, volume 12178 of Lecture Notes in Computer Science, pages 429-446. Springer, 2020. https://doi.org/10.1007/978-3-030-51825-7_30.
  35. Ankit Shukla, Armin Biere, Luca Pulina, and Martina Seidl. A survey on applications of quantified boolean formulas. In 31st IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2019, Portland, OR, USA, November 4-6, 2019, pages 78-84. IEEE, 2019. URL: https://doi.org/10.1109/ICTAI.2019.00020.
  36. Carsten Sinz and Armin Biere. Extended resolution proofs for conjoining BDDs. In Dima Grigoriev, John Harrison, and Edward A. Hirsch, editors, Computer Science - Theory and Applications, First International Symposium on Computer Science in Russia, CSR 2006, St. Petersburg, Russia, June 8-12, 2006, Proceedings, volume 3967 of Lecture Notes in Computer Science, pages 600-611. Springer, 2006. URL: https://doi.org/10.1007/11753728_60.
  37. Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and Vijay A. Saraswat. Combinatorial sketching for finite programs. In John Paul Shen and Margaret Martonosi, editors, Proceedings of the 12th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006, pages 404-415. ACM, 2006. URL: https://doi.org/10.1145/1168857.1168907.
  38. Martin Suda and Bernhard Gleiss. Local soundness for QBF calculi. In Olaf Beyersdorff and Christoph M. Wintersteiger, editors, Theory and Applications of Satisfiability Testing - SAT 2018 - 21st International Conference, SAT 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings, volume 10929 of Lecture Notes in Computer Science, pages 217-234. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-94144-8_14.
  39. Yakir Vizel, Georg Weissenbacher, and Sharad Malik. Boolean satisfiability solvers and their applications in model checking. Proc. IEEE, 103(11):2021-2035, 2015. URL: https://doi.org/10.1109/JPROC.2015.2455034.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail