LIPIcs.STACS.2013.148.pdf
- Filesize: 0.63 MB
- 12 pages
We study the complexity of approximation for a weighted counting constraint satisfaction problem #CSP(F). In the conservative case, where F contains all unary functions, a classification is known for the Boolean domain. We give a classification for problems with general finite domain. We define weak log-modularity and weak log-supermodularity, and show that #CSP(F) is in FP if F is weakly log-modular. Otherwise, it is at least as hard to approximate as #BIS, counting independent sets in bipartite graphs, which is believed to be intractable. We further sub-divide the #BIS-hard case. If F is weakly log-supermodular, we show that #CSP(F) is as easy as Boolean log-supermodular weighted #CSP. Otherwise, it is NP-hard to approximate. Finally, we give a trichotomy for the arity-2 case. Then, #CSP(F) is in FP, is #BIS-equivalent, or is equivalent to #SAT, the problem of approximately counting satisfying assignments of a CNF Boolean formula.
Feedback for Dagstuhl Publishing