Exploiting Dense Structures in Parameterized Complexity

Authors William Lochet, Daniel Lokshtanov, Saket Saurabh, Meirav Zehavi



PDF
Thumbnail PDF

File

LIPIcs.STACS.2021.50.pdf
  • Filesize: 0.83 MB
  • 17 pages

Document Identifiers

Author Details

William Lochet
  • Department of Informatics, University of Bergen, Norway
Daniel Lokshtanov
  • University of California Santa Barbara, CA, USA
Saket Saurabh
  • Institute of Mathematical Sciences, Chennai, India
  • Department of Informatics, University of Bergen, Norway
Meirav Zehavi
  • Ben Gurion University of the Negev, Beer Sheva, Israel

Acknowledgements

We thank one of the referee of a different version of this paper for sketching a proof based on the random walk on expanders for Lemma 10.

Cite AsGet BibTex

William Lochet, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Exploiting Dense Structures in Parameterized Complexity. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 50:1-50:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.STACS.2021.50

Abstract

Over the past few decades, the study of dense structures from the perspective of approximation algorithms has become a wide area of research. However, from the viewpoint of parameterized algorithm, this area is largely unexplored. In particular, properties of random samples have been successfully deployed to design approximation schemes for a number of fundamental problems on dense structures [Arora et al. FOCS 1995, Goldreich et al. FOCS 1996, Giotis and Guruswami SODA 2006, Karpinksi and Schudy STOC 2009]. In this paper, we fill this gap, and harness the power of random samples as well as structure theory to design kernelization as well as parameterized algorithms on dense structures. In particular, we obtain linear vertex kernels for Edge-Disjoint Paths, Edge Odd Cycle Transversal, Minimum Bisection, d-Way Cut, Multiway Cut and Multicut on everywhere dense graphs. In fact, these kernels are obtained by designing a polynomial-time algorithm when the corresponding parameter is at most Ω(n). Additionally, we obtain a cubic kernel for Vertex-Disjoint Paths on everywhere dense graphs. In addition to kernelization results, we obtain randomized subexponential-time parameterized algorithms for Edge Odd Cycle Transversal, Minimum Bisection, and d-Way Cut. Finally, we show how all of our results (as well as EPASes for these problems) can be de-randomized.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
Keywords
  • Dense graphs
  • disjoint paths
  • odd cycle transversal
  • kernels

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Noga Alon, Wenceslas Fernandez de la Vega, Ravi Kannan, and Marek Karpinski. Random sampling and approximation of max-csps. J. Comput. Syst. Sci., 67(2):212-243, 2003. URL: https://doi.org/10.1016/S0022-0000(03)00008-4.
  2. Noga Alon, Alan M. Frieze, and Dominic Welsh. Polynomial time randomized approximation schemes for tutte-gröthendieck invariants: The dense case. Random Struct. Algorithms, 6(4):459-478, 1995. URL: https://doi.org/10.1002/rsa.3240060409.
  3. Noga Alon, Daniel Lokshtanov, and Saket Saurabh. Fast FAST. In Automata, Languages and Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, pages 49-58, 2009. Google Scholar
  4. Noga Alon and Shachar Lovett. Almost k-wise vs. k-wise independent permutations, and uniformity for general group actions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 350-361, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. Google Scholar
  5. Gunnar Andersson and Lars Engebretsen. Property testers for dense constraint satisfaction programs on finite domains. Random Struct. Algorithms, 21(1):14-32, 2002. URL: https://doi.org/10.1002/rsa.10041.
  6. Sanjeev Arora, Alan M. Frieze, and Haim Kaplan. A new rounding procedure for the assignment problem with applications to dense graph arrangement problems. Math. Program., 92(1):1-36, 2002. URL: https://doi.org/10.1007/s101070100271.
  7. Sanjeev Arora, David R. Karger, and Marek Karpinski. Polynomial time approximation schemes for dense instances of np-hard problems. J. Comput. Syst. Sci., 58(1):193-210, 1999. URL: https://doi.org/10.1006/jcss.1998.1605.
  8. Cristina Bazgan, Wenceslas Fernandez de la Vega, and Marek Karpinski. Polynomial time approximation schemes for dense instances of minimum constraint satisfaction. Random Struct. Algorithms, 23(1):73-91, 2003. URL: https://doi.org/10.1002/rsa.10072.
  9. Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-exclusion. SIAM J. Comput., 39(2):546-563, 2009. Google Scholar
  10. Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci., 412(35):4570-4578, 2011. Google Scholar
  11. Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is FPT. SIAM J. Comput., 47(1):166-207, 2018. Google Scholar
  12. Yixin Cao, Jianer Chen, and Jia-Hao Fan. An O(1.84^k) parameterized algorithm for the multiterminal cut problem. Inf. Process. Lett., 114(4):167-173, 2014. Google Scholar
  13. Jianer Chen, Yang Liu, and Songjian Lu. An improved parameterized algorithm for the minimum node multiway cut problem. Algorithmica, 55(1):1-13, 2009. Google Scholar
  14. Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michal Pilipczuk. Designing FPT algorithms for cut problems using randomized contractions. SIAM J. Comput., 45(4):1171-1229, 2016. Google Scholar
  15. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. Google Scholar
  16. Marek Cygan, Pawel Komosa, Daniel Lokshtanov, Michal Pilipczuk, Marcin Pilipczuk, and Saket Saurabh. Randomized contractions meet lean decompositions. CoRR, abs/1810.06864, 2018. URL: http://arxiv.org/abs/1810.06864.
  17. Marek Cygan, Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Magnus Wahlström. Clique cover and graph separation: New incompressibility results. ACM Trans. Comput. Theory, 6(2):6:1-6:19, 2014. Google Scholar
  18. Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Minimum bisection is fixed-parameter tractable. SIAM J. Comput., 48(2):417-450, 2019. Google Scholar
  19. Wenceslas Fernandez de la Vega and Marek Karpinski. Polynomial time approximation of dense weighted instances of MAX-CUT. Random Struct. Algorithms, 16(4):314-332, 2000. Google Scholar
  20. Reinhard Diestel. Graph theory. Springer Publishing Company, Incorporated, 2018. Google Scholar
  21. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. Google Scholar
  22. Uriel Feige. Faster fast(feedback arc set in tournaments). CoRR, abs/0911.5094, 2009. URL: http://arxiv.org/abs/0911.5094.
  23. Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2006. Google Scholar
  24. Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Yngve Villanger. Tight bounds for parameterized complexity of cluster editing with a small number of clusters. J. Comput. Syst. Sci., 80(7):1430-1447, 2014. URL: https://doi.org/10.1016/j.jcss.2014.04.015.
  25. Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization. Theory of parameterized preprocessing. Cambridge University Press, Cambridge, 2019. Google Scholar
  26. Fedor V. Fomin and Michal Pilipczuk. Subexponential parameterized algorithm for computing the cutwidth of a semi-complete digraph. In Algorithms - ESA 2013 - 21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings, pages 505-516, 2013. Google Scholar
  27. Alan M. Frieze and Ravi Kannan. The regularity lemma and approximation schemes for dense problems. In 37th Annual Symposium on Foundations of Computer Science, FOCS '96, Burlington, Vermont, USA, 14-16 October, 1996, pages 12-20. IEEE Computer Society, 1996. URL: https://doi.org/10.1109/SFCS.1996.548459.
  28. Ioannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed number of clusters. Theory of Computing, 2(13):249-266, 2006. URL: https://doi.org/10.4086/toc.2006.v002a013.
  29. Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to learning and approximation. J. ACM, 45(4):653-750, 1998. URL: https://doi.org/10.1145/285055.285060.
  30. Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications. Bulletin of the American Mathematical Society, 43(4):439-561, 2006. Google Scholar
  31. Andreas Huck. A sufficient condition for graphs to be weaklyk-linked. Graphs and Combinatorics, 7(4):323-351, 1991. Google Scholar
  32. Marek Karpinski. Polynomial time approximation schemes for some dense instances of np-hard optimization problems. Algorithmica, 30(3):386-397, 2001. URL: https://doi.org/10.1007/s00453-001-0012-z.
  33. Marek Karpinski and Warren Schudy. Linear time approximation schemes for the gale-berlekamp game and related minimization problems. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 313-322. ACM, 2009. URL: https://doi.org/10.1145/1536414.1536458.
  34. Marek Karpinski and Warren Schudy. Faster algorithms for feedback arc set tournament, kemeny rank aggregation and betweenness tournament. In Algorithms and Computation - 21st International Symposium, ISAAC2010, Jeju Island, Korea, December 15-17, 2010, Proceedings, Part I, pages 3-14, 2010. Google Scholar
  35. Ken-ichi Kawarabayashi and Mikkel Thorup. The minimum k-way cut of bounded size is fixed-parameter tractable. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 160-169. IEEE Computer Society, 2011. Google Scholar
  36. Ken-ichi Kawarabayashi and Paul Wollan. A shorter proof of the graph minor algorithm: the unique linkage theorem. In Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 687-694. ACM, 2010. Google Scholar
  37. Stefan Kratsch and Magnus Wahlström. Compression via matroids: A randomized polynomial kernel for odd cycle transversal. ACM Trans. Algorithms, 10(4):20:1-20:15, 2014. Google Scholar
  38. Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools for kernelization. J. ACM, 67(3):16:1-16:50, 2020. Google Scholar
  39. Daniel Lokshtanov, Pranabendu Misra, Michal Pilipczuk, Saket Saurabh, and Meirav Zehavi. An exponential time parameterized algorithm for planar disjoint paths. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1307-1316. ACM, 2020. Google Scholar
  40. Jayakrishnan Madathil, Roohani Sharma, and Meirav Zehavi. A sub-exponential fpt algorithm and a polynomial kernel for minimum directed bisection on semicomplete digraphs. In 44th International Symposium on Mathematical Foundations of Computer Science MFCS 2009, Aachen, Germany, August 26-30, 2019, 2019. Google Scholar
  41. Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394-406, 2006. Google Scholar
  42. Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the size of the cutset. SIAM J. Comput., 43(2):355-388, 2014. Google Scholar
  43. Claire Mathieu and Warren Schudy. Yet another algorithm for dense max cut: go greedy. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008, pages 176-182. SIAM, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347102.
  44. Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10(1):96-115, 1927. Google Scholar
  45. Pranabendu Misra, Saket Saurabh, Roohani Sharma, and Meirav Zehavi. Sub-exponential time parameterized algorithms for graph layout problems on digraphs with bounded independence number. In 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2018, December 11-13, 2018, Ahmedabad, India, pages 35:1-35:19, 2018. Google Scholar
  46. Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006. Google Scholar
  47. Marcin Pilipczuk, Michal Pilipczuk, and Marcin Wrochna. Edge bipartization faster than 2^k. Algorithmica, 81(3):917-966, 2019. Google Scholar
  48. Neil Robertson and Paul D. Seymour. Graph minors XIII. the disjoint paths problem. J. Comb. Theory, Ser. B, 63(1):65-110, 1995. Google Scholar
  49. René van Bevern, Andreas Emil Feldmann, Manuel Sorge, and Ondrej Suchý. On the parameterized complexity of computing graph bisections. In Andreas Brandstädt, Klaus Jansen, and Rüdiger Reischuk, editors, Graph-Theoretic Concepts in Computer Science - 39th International Workshop, WG 2013, Lübeck, Germany, June 19-21, 2013, Revised Papers, volume 8165 of Lecture Notes in Computer Science, pages 76-87. Springer, 2013. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail