Document

# Subquadratic-Time Algorithm for the Diameter and All Eccentricities on Median Graphs

## File

LIPIcs.STACS.2022.9.pdf
• Filesize: 0.8 MB
• 21 pages

## Cite As

Pierre Bergé, Guillaume Ducoffe, and Michel Habib. Subquadratic-Time Algorithm for the Diameter and All Eccentricities on Median Graphs. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 9:1-9:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.STACS.2022.9

## Abstract

On sparse graphs, Roditty and Williams [2013] proved that no O(n^{2-ε})-time algorithm achieves an approximation factor smaller than 3/2 for the diameter problem unless SETH fails. We answer here an open question formulated in the literature: can we use the structural properties of median graphs to break this global quadratic barrier? We propose the first combinatorial algorithm computing exactly all eccentricities of a median graph in truly subquadratic time. Median graphs constitute the family of graphs which is the most studied in metric graph theory because their structure represents many other discrete and geometric concepts, such as CAT(0) cube complexes. Our result generalizes a recent one, stating that there is a linear-time algorithm for computing all eccentricities in median graphs with bounded dimension d, i.e. the dimension of the largest induced hypercube (note that 1-dimensional median graphs are exactly the forests). This prerequisite on d is not necessarily anymore to determine all eccentricities in subquadratic time. The execution time of our algorithm is O(n^{1.6456}log^{O(1)} n).

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Parameterized complexity and exact algorithms
• Theory of computation → Data structures design and analysis
##### Keywords
• Diameter
• Eccentricities
• Metric graph theory
• Median graphs
• Hypercubes

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. A. Abboud, F. Grandoni, and V. V. Williams. Subcubic equivalences between graph centrality problems, APSP and diameter. In Proc. of SODA, pages 1681-1697, 2015.
2. A. Abboud, V. V. Williams, and J. R. Wang. Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In Proc. of SODA, pages 377-391, 2016.
3. S. P. Avann. Metric ternary distributive semi-lattices. Proc. Amer. Math. Soc., 12:407-414, 1961.
4. H. Bandelt. Retracts of hypercubes. Journal of Graph Theory, 8(4):501-510, 1984.
5. H. Bandelt and V. Chepoi. Metric graph theory and geometry: a survey. Contemp. Math., 453:49-86, 2008.
6. H. Bandelt, V. Chepoi, A. W. M. Dress, and J. H. Koolen. Combinatorics of lopsided sets. Eur. J. Comb., 27(5):669-689, 2006.
7. H. Bandelt, V. Chepoi, and D. Eppstein. Combinatorics and geometry of finite and infinite squaregraphs. SIAM J. Discret. Math., 24(4):1399-1440, 2010.
8. H. Bandelt, L. Quintana-Murci, A. Salas, and V. Macaulay. The fingerprint of phantom mutations in mitochondrial dna data. Am. J. Hum. Genet., 71:1150-1160, 2002.
9. H. Bandelt and M. van de Vel. Embedding topological median algebras in products of dendrons. Proc. London Math. Soc., 58:439-453, 1989.
10. H. J. Bandelt, P. Forster, B. C. Sykes, and M. B. Richards. Mitochondrial portraits of human populations using median networks. Genetics, 141(2):743-753, 1995.
11. J. Barthélemy and J. Constantin. Median graphs, parallelism and posets. Discret. Math., 111(1-3):49-63, 1993.
12. J. Barthélemy, B. Leclerc, and B. Monjardet. On the use of ordered sets in problems of comparison and consensus of classifications. Journal of Classification, 3:187-224, 1986.
13. L. Bénéteau, J. Chalopin, V. Chepoi, and Y. Vaxès. Medians in median graphs and their cube complexes in linear time. In Proc. of ICALP, volume 168, pages 10:1-10:17, 2020.
14. P. Bergé, G. Ducoffe, and M. Habib. Subquadratic-time algorithm for the diameter and all eccentricities on median graphs. CoRR, abs/2110.02709, 2021.
15. P. Bergé and M. Habib. Diameter, radius and all eccentricities in linear time for constant-dimension median graphs. In Proc. of LAGOS, 2021.
16. G. Birkhoff and S. A. Kiss. A ternary operation in distributive lattices. Bull. Amer. Math. Soc., 53:745-752, 1947.
17. B. Bresar. Characterizing almost-median graphs. Eur. J. Comb., 28(3):916-920, 2007.
18. S. Cabello. Subquadratic algorithms for the diameter and the sum of pairwise distances in planar graphs. In Proc. of SODA, pages 2143-2152, 2017.
19. S. Chechik, D. H. Larkin, L. Roditty, G. Schoenebeck, R. E. Tarjan, and V. V. Williams. Better approximation algorithms for the graph diameter. In Proc. of SODA, pages 1041-1052, 2014.
20. V. Chepoi. Graphs of some CAT(0) complexes. Adv. Appl. Math., 24(2):125-179, 2000.
21. V. Chepoi, F. F. Dragan, and Y. Vaxès. Center and diameter problems in plane triangulations and quadrangulations. In Proc. of SODA, pages 346-355, 2002.
22. V. Chepoi, A. Labourel, and S. Ratel. Distance labeling schemes for cube-free median graphs. In Proc. of MFCS, volume 138, pages 15:1-15:14, 2019.
23. G. Ducoffe. Isometric embeddings in trees and their use in distance problems. In Proc. of MFCS, volume 202 of LIPIcs, pages 43:1-43:16, 2021.
24. G. Ducoffe, M. Habib, and L. Viennot. Diameter computation on H-minor free graphs and graphs of bounded (distance) VC-dimension. In Proc. of SODA, pages 1905-1922, 2020.
25. J. Hagauer, W. Imrich, and S. Klavzar. Recognizing median graphs in subquadratic time. Theor. Comput. Sci., 215(1-2):123-136, 1999.
26. R. Hammack, W. Imrich, and S. Klavzar. Handbook of Product Graphs, Second Edition. CRC Press, Inc., 2011.
27. W. Imrich, S. Klavzar, and H. M. Mulder. Median graphs and triangle-free graphs. SIAM J. Discret. Math., 12(1):111-118, 1999.
28. S. Klavzar and H. M. Mulder. Partial cubes and crossing graphs. SIAM J. Discret. Math., 15(2):235-251, 2002.
29. S. Klavzar, H. M. Mulder, and R. Skrekovski. An Euler-type formula for median graphs. Discret. Math., 187(1-3):255-258, 1998.
30. S. Klavzar and S. V. Shpectorov. Characterizing almost-median graphs II. Discret. Math., 312(2):462-464, 2012.
31. M. Kovse. Complexity of phylogenetic networks: counting cubes in median graphs and related problems. Analysis of complex networks: From Biology to Linguistics, pages 323-350, 2009.
32. F. R. McMorris, H. M. Mulder, and F. S. Roberts. The median procedure on median graphs. Discret. Appl. Math., 84(1-3):165-181, 1998.
33. H. M. Mulder and A. Schrijver. Median graphs and Helly hypergraphs. Discret. Math., 25(1):41-50, 1979.
34. M. Mulder. The structure of median graphs. Discret. Math., 24(2):197-204, 1978.
35. M. Mulder. The interval function of a graph. Mathematical Centre Tracts, Mathematisch Centrum, Amsterdam, 1980.
36. L. Roditty and V. V. Williams. Fast approximation algorithms for the diameter and radius of sparse graphs. In Proc. of STOC, pages 515-524, 2013.
37. V. Sassone, M. Nielsen, and G. Winskel. A classification of models for concurrency. In Proc. of CONCUR, volume 715 of Lecture Notes in Computer Science, pages 82-96, 1993.
38. Peter M Winkler. Isometric embedding in products of complete graphs. Discrete Applied Mathematics, 7(2):221-225, 1984.
X

Feedback for Dagstuhl Publishing