For a subset B of ℝ, denote by U(B) be the semiring of (univariate) polynomials in ℝ[X] that are strictly positive on B. Let ℕ[X] be the semiring of (univariate) polynomials with non-negative integer coefficients. We study solutions of homogeneous linear equations over the polynomial semirings U(B) and ℕ[X]. In particular, we prove local-global principles for solving single homogeneous linear equations over these semirings. We then show PTIME decidability of determining the existence of non-zero solutions over ℕ[X] of single homogeneous linear equations. Our study of these polynomial semirings is largely motivated by several semigroup algorithmic problems in the wreath product ℤ≀ℤ. As an application of our results, we show that the Identity Problem (whether a given semigroup contains the neutral element?) and the Group Problem (whether a given semigroup is a group?) for finitely generated sub-semigroups of the wreath product ℤ≀ℤ is decidable when elements of the semigroup generator have the form (y, ±1).
@InProceedings{dong:LIPIcs.STACS.2023.26, author = {Dong, Ruiwen}, title = {{Solving Homogeneous Linear Equations over Polynomial Semirings}}, booktitle = {40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)}, pages = {26:1--26:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-266-2}, ISSN = {1868-8969}, year = {2023}, volume = {254}, editor = {Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.26}, URN = {urn:nbn:de:0030-drops-176784}, doi = {10.4230/LIPIcs.STACS.2023.26}, annote = {Keywords: wreath product, identity problem, polynomial semiring, positive polynomial} }
Feedback for Dagstuhl Publishing